O'REILLY"

NES
Cookbook

Derek DeJonghe

L o

(8]

Cost Savings

Over 80% cost savings
compared to hardware
application delivery con-
trollers and WAFs, with
all the performance and
features you expect.

Download at

Try

NGINX Plus

and NGINX WAF
free for 30 days

Get high-performance application delivery for
microservices. NGINX Plus is a software load
balancer, web server, and content cache.
The NGINX Web Application Firewall (WAF)
protects applications against sophisticated
Layer 7 attacks.

o
5>0

Reduced Complexity

The only all-in-one
load balancer, content
cache, web server,
and web application
firewall helps reduce
infrastructure sprawl.

Exclusive Features

JWT authentication,
high availability, the
NGINX Plus API, and
other advanced
functionality are only

available in NGINX Plus.

(]
L]
/10

NGINX WAF

Atrial of the
NGINX WAF, based
on ModSecurity,
is included when you
download a trial of
NGINX Plus.

NGINX

2019 UPDATE

NGINX Cookbook

Advanced Recipes for High
Performance Load Balancing

Derek DeJonghe

Beijing - Boston + Farnham - Sebastopol + Tokyo [K@AR{=IMNG

NGINX Cookbook
by Derek DeJonghe

Copyright © 2019 O’Reilly Media Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Development Editor: Virginia Wilson Proofreader: Chris Edwards
Acquisitions Editor: Brian Anderson Interior Designer: David Futato
Production Editor: Justin Billing Cover Designer: Karen Montgomery
Copyeditor: Octal Publishing, LLC lllustrator: Rebecca Demarest
March 2017: First Edition

Revision History for the First Edition

2017-05-26: First Release
2018-11-21: Second Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. NGINX Cook-
book, the cover image, and related trade dress are trademarks of O’'Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi-
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi-
bility to ensure that your use thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement
of editorial independence.

978-1-491-96893-2
[LSI]

Table of Contents

Foreword.ooviiiiiiiii ix
Preface. ... oo Xi
L - 3 1
1.0 Introduction 1
1.1 Installing on Debian/Ubuntu 1
1.2 Installing on RedHat/CentOS 2
1.3 Installing NGINX Plus 3
1.4 Verifying Your Installation 4
1.5 Key Files, Commands, and Directories 5
1.6 Serving Static Content 7
1.7 Graceful Reload 8
2. High-Performance Load Balancing.................covvvennntn 9
2.0 Introduction 9
2.1 HTTP Load Balancing 10
2.2 TCP Load Balancing 11
2.3 UDP Load Balancing 13
2.4 Load-Balancing Methods 14
2.5 Sticky Cookie 17
2.6 Sticky Learn 18
2.7 Sticky Routing 19
2.8 Connection Draining 20
2.9 Passive Health Checks 21
2.10 Active Health Checks 22

2.11 Slow Start 24

2.12 TCP Health Checks

. TrafficManagement...........c.coovviiiiiiiiiieennennnnnens

3.0 Introduction

3.1 A/B Testing

3.2 Using the GeoIP Module and Database
3.3 Restricting Access Based on Country
3.4 Finding the Original Client

3.5 Limiting Connections

3.6 Limiting Rate

3.7 Limiting Bandwidth

Massively Scalable Content Caching...............ccovvvenen.

4.0 Introduction

4.1 Caching Zones

4.2 Caching Hash Keys
4.3 Cache Bypass

4.4 Cache Performance
4.5 Purging

4.6 Cache Slicing

Programmability and Automation...........................

5.0 Introduction

5.1 NGINX Plus API

5.2 Key-Value Store

5.3 Installing with Puppet

5.4 Installing with Chef

5.5 Installing with Ansible

5.6 Installing with SaltStack

5.7 Automating Configurations with Consul Templating

. Authentication........cooviiiiiiiiiiiiiiiiiiiiiinnnnnes

6.0 Introduction

6.1 HTTP Basic Authentication

6.2 Authentication Subrequests

6.3 Validating JWTs

6.4 Creating JSON Web Keys

6.5 Authenticate Users via Existing OpenID Connect SSO
6.6 Obtaining the JSON Web Key from Google

25

27
27
27
28
31
32
33
34
35

37
37
37
39
40
41
41
42

45
45
46
49
51
53
54
56
58

61
61
61
63
64
65
67
68

iv

| Table of Contents

7. Security CONtrols.ovuvvennrinnieiiiiiiiiiiiieiiienieeans
7.0 Introduction
7.1 Access Based on IP Address
7.2 Allowing Cross-Origin Resource Sharing
7.3 Client-Side Encryption
7.4 Upstream Encryption
7.5 Securing a Location
7.6 Generating a Secure Link with a Secret
7.7 Securing a Location with an Expire Date
7.8 Generating an Expiring Link
7.9 HTTPS Redirects
7.10 Redirecting to HTTPS where SSL/TLS Is Terminated
Before NGINX
7.11 HTTP Strict Transport Security
7.12 Satistying Any Number of Security Methods
7.13 Dynamic DDoS Mitigation

T I 127
8.0 Introduction
8.1 Basic Configuration
8.2 gRPC
8.3 HT'TP/2 Server Push

9. Sophisticated Media Streaming...............ccooviiiiinn..L.
9.0 Introduction
9.1 Serving MP4 and FLV
9.2 Streaming with HLS
9.3 Streaming with HDS
9.4 Bandwidth Limits

10. Cloud Deployments.........covvererinnrenniennernnerennnes
10.0 Introduction
10.1 Auto-Provisioning on AWS
10.2 Routing to NGINX Nodes Without an AWS ELB
10.3 The NLB Sandwich
10.4 Deploying from the AWS Marketplace
10.5 Creating an NGINX Virtual Machine Image on Azure
10.6 Load Balancing Over NGINX Scale Sets on Azure
10.7 Deploying Through the Azure Marketplace
10.8 Deploying to Google Compute Engine
10.9 Creating a Google Compute Image

71
71
72
74
75
76
77
78
79
81

82
83
83
84

87
87
88
90

93
93
93
94
96
96

929

99

99
101
103
105
107
109
110
111
112

Table of Contents

| v

1.

12.

13.

14.

15.

10.10 Creating a Google App Engine Proxy 113

Containers/Microservices.oovvvieiiiiiiieneeneennnnnn. 115
11.0 Introduction 115
11.1 DNS SRV Records 115
11.2 Using the Official NGINX Image 116
11.3 Creating an NGINX Dockerfile 118
11.4 Building an NGINX Plus Image 119
11.5 Using Environment Variables in NGINX 121
11.6 Kubernetes Ingress Controller 123
11.7 OpenShift Router 126
High-Availability Deployment Modes. 129
12.0 Introduction 129
12.1 NGINX HA Mode 129
12.2 Load-Balancing Load Balancers with DNS 130
12.3 Load Balancing on EC2 131
12.4 Configuration Synchronization 132
12.5 State Sharing with Zone Sync 134
Advanced Activity Monitoring...............ccoovvviiniinn 137
13.0 Introduction 137
13.1 Enable NGINX Open Source Stub Status 137
13.2 Enabling the NGINX Plus Monitoring Dashboard

Provided by NGINX Plus 138
13.3 Collecting Metrics Using the NGINX Plus API 140

Debugging and Troubleshooting with Access Logs, Error Logs, and

Request Tracing.ovvviiiiniiniiiniiniiieenneninnnss 143
14.0 Introduction 143
14.1 Configuring Access Logs 143
14.2 Configuring Error Logs 145
14.3 Forwarding to Syslog 146
14.4 Request Tracing 147
Performance Tuning..........coovvuiiiiiieiiirenneenneennn, 149
15.0 Introduction 149
15.1 Automating Tests with Load Drivers 149
15.2 Keeping Connections Open to Clients 150
15.3 Keeping Connections Open Upstream 151
15.4 Buffering Responses 152

<

| Table of Contents

16.

15.5 Buffering Access Logs
15.6 OS Tuning

Practical Ops Tips and Conclusion.ccoovvvnenn

16.0 Introduction

16.1 Using Includes for Clean Configs
16.2 Debugging Configs

16.3 Conclusion

153
154

157
157
157
158
160

Table of Contents

vii

Foreword

Welcome to the updated edition of the NGINX Cookbook. It has
been nearly two years since O'Reilly published the original NGINX
Cookbook. A lot has changed since then, but one thing hasn't: every
day more and more of the world’s websites choose to run on
NGINX. Today there are 300 million, nearly double the number
when the first cookbook was released.

There are a lot of reasons NGINX use is still growing 14 years after
its initial release. It's a Swiss Army knife: NGINX can be a web
server, load balancer, content cache, and API gateway. But perhaps
more importantly, it’s reliable.

The NGINX Cookbook shows you how to get the most out of
NGINX Open Source and NGINX Plus. You will find over 150 pages
of easy-to-follow recipes covering everything from how to properly
install NGINX, to how to configure all the major features, to debug-
ging and troubleshooting.

This updated version also covers new open source features like
gRPC support, HTTP/2 server push, and the Random with Two
Choices load-balancing algorithm for clustered environments as
well as new NGINX Plus features like support for state sharing, a
new NGINX Plus API, and a key-value store. Almost everything you
need to know about NGINX is covered in these pages.

We hope you enjoy the NGINX Cookbook and that it contributes to
your success in creating and deploying the applications we all rely
on.

— Faisal Memon
Product Marketing Manager, NGINX, Inc.

Preface

The NGINX Cookbook aims to provide easy-to-follow examples to
real-world problems in application delivery. Throughout this book
you will explore the many features of NGINX and how to use them.
This guide is fairly comprehensive, and touches most of the main
capabilites of NGINX.

Throughout this book, there will be references to both the free and
open source NGINX software, as well as the commercial product
from NGINX, Inc., NGINX Plus. Features and directives that are
only available as part of the paid subscription to NGINX Plus will be
denoted as such. Because NGINX Plus is an application delivery
contoller and provides many advanced features, its important to
highlight these features to gain a full view of the possibilities of the
platform.

The book will begin by explaining the installation process of
NGINX and NGINX Plus, as well as some basic getting started steps
for readers new to NGINX. From there, the sections will progress to
load balancing in all forms, accompanied by chapters about traffic
management, caching, and automation. The authentication and
security controls chapters cover a lot of ground but are important
as NGINX is often the first point of entry for web traffic to your
application, and the first line of application layer defense. There are
a number of chapters that cover cutting edge topics such as
HTTP/2, media streaming, cloud and container environments,
wrapping up with more traditional operational topics such as
monitoring, debugging, performance, and operational tips.

Xi

I personally use NGINX as a multitool, and believe this book will
enable you to do the same. It’s software that I believe in and
enjoy working with. I'm happy to share this knowledge with you,
and hope that as you read through this book you relate the
recipes to your real world scenarios and employ these solutions.

xii | Preface

CHAPTER1
Basics

1.0 Introduction

To get started with NGINX Open Source or NGINX Plus, you first
need to install it on a system and learn some basics. In this chapter
you will learn how to install NGINX, where the main configuration
files are, and commands for administration. You will also learn how
to verify your installation and make requests to the default server.

1.1 Installing on Debian/Ubuntu

Problem

You need to install NGINX Open Source on a Debian or Ubuntu
machine.

Solution

Create a file named /etc/apt/sources.list.d/nginx.list that contains the
following contents:
deb http://nginx.org/packages/mainline/0S/ CODENAME nginx
deb-src http://nginx.org/packages/mainline/0S/ CODENAME nginx
Alter the file, replacing 0S at the end of the URL with ubuntu or
debian, depending on your distribution. Replace CODENAME with the
code name for your distrobution; jessie or stretch for Debian, or

trusty, xenial, artful, or bionic for ubuntu. Then, run the fol-
lowing commands:

wget http://nginx.org/keys/nginx_signing.key

apt-key add nginx_signing.key

apt-get update

apt-get install -y nginx

J/etc/init.d/nginx start

Discussion

The file you just created instructs the apt package management sys-
tem to utilize the Official NGINX package repository. The com-
mands that follow download the NGINX GPG package signing key
and import it into apt. Providing apt the signing key enables the apt
system to validate packages from the repository. The apt-get
update command instructs the apt system to refresh its package list-
ings from its known repositories. After the package list is refreshed,
you can install NGINX Open Source from the Official NGINX
repository. After you install it, the final command starts NGINX.

1.2 Installing on RedHat/Cent0S

Problem

You need to install NGINX Open Source on RedHat or CentOS.

Solution

Create a file named /etc/yum.repos.d/nginx.repo that contains the
following contents:
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/mainline/0S/OSRELEASE/Sbasearch/

gpgcheck=0
enabled=1

Alter the file, replacing 0S at the end of the URL with rhel or cen
tos, depending on your distribution. Replace OSRELEASE with 6 or 7

for version 6.x or 7.x, respectively. Then, run the following
commands:

yum -y install nginx
systemctl enable nginx

2 | Chapter 1:Basics

systemctl start nginx
firewall-cmd --permanent --zone=public --add-port=80/tcp
firewall-cmd --reload

Discussion

The file you just created for this solution instructs the yum package
management system to utilize the Official NGINX Open Source
package repository. The commands that follow install NGINX Open
Source from the Official repository, instruct systemd to enable
NGINX at boot time, and tell it to start it now. The firewall com-
mands open port 80 for the TCP protocol, which is the default port
for HTTP. The last command reloads the firewall to commit the
changes.

1.3 Installing NGINX Plus

Problem

You need to install NGINX Plus.

Solution

Visit http://cs.nginx.com/repo_setup. From the drop-down menu,
select the OS you're installing and then follow the instructions. The
instructions are similar to the installation of the open source solu-
tions; however, you need to install a certificate in order to authenti-
cate to the NGINX Plus repository.

Discussion

NGINX keeps this repository installation guide up to date with
instructions on installing the NGINX Plus. Depending on your OS
and version, these instructions vary slightly, but there is one com-
monality. You must log in to the NGINX portal to download a cer-
tificate and key to provide to your system that are used to
authenticate to the NGINX Plus repository.

1.3 Installing NGINXPlus | 3

1.4 Verifying Your Installation

Problem

You want to validate the NGINX installation and check the version.

Solution

You can verify that NGINX is installed and check its version by
using the following command:

$ nginx -v
nginx version: nginx/1.15.3

As this example shows, the response displays the version.

You can confirm that NGINX is running by using the following
command:
$ ps -ef | grep nginx

root 1738 1 0 19:54 ? 00:00:00 nginx: master process
nginx 1739 1738 0 19:54 ? 00:00:00 nginx: worker process

The ps command lists running processes. By piping it to grep, you
can search for specific words in the output. This example uses grep
to search for nginx. The result shows two running processes, a mas
ter and worker. If NGINX is running, you will always see a master
and one or more worker processes. For instructions on starting
NGINX, refer to the next section. To see how to start NGINX as a
daemon, use the init.d or systemd methodologies.

To verify that NGINX is returning requests correctly, use your
browser to make a request to your machine or use curl:

$ curl localhost
You will see the NGINX Welcome default HTML site.

Discussion

The nginx command allows you to interact with the NGINX binary
to check the version, list installed modules, test configurations, and
send signals to the master process. NGINX must be running in
order for it to serve requests. The ps command is a surefire way to
determine whether NGINX is running either as a daemon or in the
foreground. The default configuration provided by default with

4 | Chapter1:Basics

NGINX runs a static site HT'TP server on port 80. You can test this
default site by making an HTTP request to the machine at local
host as well as the host’s IP and hostname.

1.5 Key Files, Commands, and Directories

Problem

You need to understand the important NGINX directories and
commands.

Solution

NGINX files and directories

/etc/nginx/
The /etc/nginx/ directory is the default configuration root for
the NGINX server. Within this directory you will find configu-
ration files that instruct NGINX on how to behave.

/etc/nginx/nginx.conf

The /etc/nginx/nginx.conf file is the default configuration entry
point used by the NGINX service. This configuration file sets up
global settings for things like worker process, tuning, logging,
loading dynamic modules, and references to other NGINX con-
figuration files. In a default configuration, the /etc/nginx/
nginx.conf file includes the top-level http block, which includes
all configuration files in the directory described next.

/etc/nginx/conf.d/

The /etc/nginx/conf.d/ directory contains the default HTTP
server configuration file. Files in this directory ending in .conf
are included in the top-level http block from within the /etc/
nginx/nginx.conf file. It’s best practice to utilize include state-
ments and organize your configuration in this way to keep your
configuration files concise. In some package repositories, this
folder is named sites-enabled, and configuration files are linked
from a folder named site-available; this convention is depre-
cated.

1.5 Key Files, Commands, and Directories | 5

/var/log/nginx/
The /var/log/nginx/ directory is the default log location for
NGINX. Within this directory you will find an access.log file and
an errorlog file. The access log contains an entry for each
request NGINX serves. The error log file contains error events
and debug information if the debug module is enabled.

NGINX commands

nginx -h
Shows the NGINX help menu.

nginx -v
Shows the NGINX version.
nginx -V

Shows the NGINX version, build information, and configura-
tion arguments, which shows the modules built in to the
NGINX binary.

nginx -t
Tests the NGINX configuration.

nginx -T
Tests the NGINX configuration and prints the validated config-
uration to the screen. This command is useful when seeking
support.

nginx -s signal
The -s flag sends a signal to the NGINX master process. You
can send signals such as stop, quit, reload, and reopen. The
stop signal discontinues the NGINX process immediately. The
quit signal stops the NGINX process after it finishes processing
inflight requests. The reload signal reloads the configuration.
The reopen signal instructs NGINX to reopen log files.

Discussion

With an understanding of these key files, directories, and com-
mands, youre in a good position to start working with NGINX.
With this knowledge, you can alter the default configuration files
and test your changes by using the nginx -t command. If your test

6 | Chapter 1:Basics

is successful, you also know how to instruct NGINX to reload its
configuration using the nginx -s reload command.

1.6 Serving Static Content

Problem

You need to serve static content with NGINX.

Solution

Overwrite the default HTTP server configuration located in /etc/
nginx/conf.d/default.conf with the following NGINX configuration
example:

server {
listen 80 default_server;
server_name www.example.com;

location / {
root /usr/share/nginx/html;
alias /usr/share/nginx/html;
index index.html index.htm;

}

Discussion

This configuration serves static files over HT'TP on port 80 from the
directory /usr/share/nginx/html/. The first line in this configuration
defines a new server block. This defines a new context for NGINX
to listen for. Line two instructs NGINX to listen on port 80, and the
default_server parameter instructs NGINX to use this server as
the default context for port 80. The server_name directive defines
the hostname or names of which requests should be directed to this
server. If the configuration had not defined this context as the
default_server, NGINX would direct requests to this server only if
the HTTP host header matched the value provided to the
server_name directive.

The location block defines a configuration based on the path in the
URL. The path, or portion of the URL after the domain, is referred
to as the URL. NGINX will best match the URI requested to a loca

1.6 Serving Static Content | 7

tion block. The example uses / to match all requests. The root
directive shows NGINX where to look for static files when serving
content for the given context. The URI of the request is appended to
the root directive’s value when looking for the requested file. If we
had provided a URI prefix to the location directive, this would be
included in the appended path, unless we used the alias directory
rather than root. Lastly, the index directive provides NGINX with a
default file, or list of files to check, in the event that no further path
is provided in the URL.

1.7 Graceful Reload

Problem

You need to reload your configuration without dropping packets.

Solution

Use the reload method of NGINX to achieve a graceful reload of
the configuration without stopping the server:

$ nginx -s reload

This example reloads the NGINX system using the NGINX binary
to send a signal to the master process.

Discussion

Reloading the NGINX configuration without stopping the server
provides the ability to change configurations on the fly without
dropping any packets. In a high-uptime, dynamic environment, you
will need to change your load-balancing configuration at some
point. NGINX allows you to do this while keeping the load balancer
online. This feature enables countless possibilities, such as rerun-
ning configuration management in a live environment, or building
an application- and cluster-aware module to dynamically configure
and reload NGINX to meet the needs of the environment.

8 | Chapter 1:Basics

CHAPTER 2
High-Performance Load Balancing

2.0 Introduction

Today’s internet user experience demands performance and uptime.
To achieve this, multiple copies of the same system are run, and
the load is distributed over them. As the load increases, another
copy of the system can be brought online. This architecture techni-
que is called horizontal scaling. Software-based infrastructure is
increasing in popularity because of its flexibility, opening up a vast
world of possibilities. Whether the use case is as small as a set of
two for high availability or as large as thousands around the globe,
there’s a need for a load-balancing solution that is as dynamic as
the infrastructure. NGINX fills this need in a number of ways,
such as HTTP, TCP, and UDP load balancing, which we cover in
this chapter.

When balancing load, it's important that the impact to the client is
only a positive one. Many modern web architectures employ state-
less application tiers, storing state in shared memory or databases.
However, this is not the reality for all. Session state is immensely val-
uable and vast in interactive applications. This state might be stored
locally to the application server for a number of reasons; for exam-
ple, in applications for which the data being worked is so large that
network overhead is too expensive in performance. When state is
stored locally to an application server, it is extremely important to
the user experience that the subsequent requests continue to be
delivered to the same server. Another facet of the situation is that

servers should not be released until the session has finished. Work-
ing with stateful applications at scale requires an intelligent load bal-
ancer. NGINX Plus offers multiple ways to solve this problem by
tracking cookies or routing. This chapter covers session persistence
as it pertains to load balancing with NGINX and NGINX Plus.

Ensuring that the application NGINX is serving is healthy is also
important. For a number of reasons, applications fail. It could be
because of network connectivity, server failure, or application fail-
ure, to name a few. Proxies and load balancers must be smart
enough to detect failure of upstream servers and stop passing traffic
to them; otherwise, the client will be waiting, only to be delivered a
timeout. A way to mitigate service degradation when a server fails is
to have the proxy check the health of the upstream servers. NGINX
offers two different types of health checks: passive, available in the
open source version; and active, available only in NGINX Plus.
Active health checks at regular intervals will make a connection or
request to the upstream server and can verify that the response is
correct. Passive health checks monitor the connection or responses
of the upstream server as clients make the request or connection.
You might want to use passive health checks to reduce the load of
your upstream servers, and you might want to use active health
checks to determine failure of an upstream server before a client is
served a failure. The tail end of this chapter examines monitoring
the health of the upstream application servers for which you’re load
balancing.

2.1 HTTP Load Balancing

Problem

You need to distribute load between two or more HTTP servers.

Solution

Use NGINX’s HTTP module to load balance over HTTP servers
using the upstream block:

upstream backend {
server 10.10.12.45:80 weight=1;
server app.example.com:80 weight=2;

}

server {

10 | Chapter2: High-Performance Load Balancing

location / {
proxy_pass http://backend;
}
}

This configuration balances load across two HTTP servers on port
80. The weight parameter instructs NGINX to pass twice as many
connections to the second server, and the weight parameter defaults
to 1.

Discussion

The HTTP upstream module controls the load balancing for HTTP.
This module defines a pool of destinations—any combination of
Unix sockets, IP addresses, and DNS records, or a mix. The
upstream module also defines how any individual request is
assigned to any of the upstream servers.

Each upstream destination is defined in the upstream pool by the
server directive. The server directive is provided a Unix socket, IP
address, or an FQDN, along with a number of optional parameters.
The optional parameters give more control over the routing of
requests. These parameters include the weight of the server in the
balancing algorithm; whether the server is in standby mode, avail-
able, or unavailable; and how to determine if the server is unavail-
able. NGINX Plus provides a number of other convenient
parameters like connection limits to the server, advanced DNS reso-
lution control, and the ability to slowly ramp up connections to a
server after it starts.

2.2 TCP Load Balancing

Problem

You need to distribute load between two or more TCP servers.

Solution

Use NGINX’s stream module to load balance over TCP servers
using the upstream block:
stream {

upstream mysql_read {
server readl.example.com:3306 weight=5;

2.2TCPLoad Balancing | 11

server read2.example.com:3306;

server 10.10.12.34:3306 backup;
}
server {

listen 3306;

proxy_pass mysql_read;
}

}

The server block in this example instructs NGINX to listen on TCP
port 3306 and balance load between two MySQL database read rep-
licas, and lists another as a backup that will be passed traffic if the
primaries are down. This configuration is not to be added to the
conf.d folder as that folder is included within an http block;
instead, you should create another folder named stream.conf.d,
open the stream block in the nginx.conf file, and include the new
folder for stream configurations.

Discussion

TCP load balancing is defined by the NGINX stream module. The
stream module, like the HTTP module, allows you to define upstream
pools of servers and configure a listening server. When configuring
a server to listen on a given port, you must define the port it’s to lis-
ten on, or optionally, an address and a port. From there, a destina-
tion must be configured, whether it be a direct reverse proxy to
another address or an upstream pool of resources.

The upstream for TCP load balancing is much like the upstream for
HTTP, in that it defines upstream resources as servers, configured
with Unix socket, IP, or fully qualified domain name (FQDN), as
well as server weight, max number of connections, DNS resolvers,
and connection ramp-up periods; and if the server is active, down,
or in backup mode.

NGINX Plus offers even more features for TCP load balancing.
These advanced features offered in NGINX Plus can be found
throughout this book. Health checks for all load balancing will be
covered later in this chapter.

12 | Chapter2: High-Performance Load Balancing

2.3 UDP Load Balancing

Problem

You need to distribute load between two or more UDP servers.

Solution

Use NGINX’s stream module to load balance over UDP servers
using the upstream block defined as udp:

stream {
upstream ntp {
server ntpl.example.com:123 weight=2;
server ntp2.example.com:123;

}
server {
listen 123 udp;
proxy_pass ntp;
}

}

This section of configuration balances load between two upstream
Network Time Protocol (NTP) servers using the UDP protocol.
Specifying UDP load balancing is as simple as using the udp param-
eter on the listen directive.

If the service youre load balancing over requires multiple packets to
be sent back and forth between client and server, you can specify the
reuseport parameter. Examples of these types of services are
OpenVPN, Voice over Internet Protocol (VoIP), virtual desktop sol-
utions, and Datagram Transport Layer Security (DTLS). The follow-
ing is an example of using NGINX to handle OpenVPN connections
and proxy them to the OpenVPN service running locally:

stream {
server {
listen 1195 udp reuseport;
proxy_pass 127.0.0.1:1194;

2.3 UDP Load Balancing | 13

Discussion

You might ask, “Why do I need a load balancer when I can have
multiple hosts in a DNS A or SRV record?” The answer is that not
only are there alternative balancing algorithms with which we can
balance, but we can load balance over the DNS servers themselves.
UDP services make up a lot of the services that we depend on in
networked systems, such as DNS, NTP, and VoIP. UDP load balanc-
ing might be less common to some but just as useful in the world of
scale.

You can find UDP load balancing in the stream module, just like
TCP, and configure it mostly in the same way. The main difference
is that the listen directive specifies that the open socket is for
working with datagrams. When working with datagrams, there are
some other directives that might apply where they would not in
TCP, such as the proxy_response directive, which specifies to
NGINX how many expected responses can be sent from the
upstream server. By default, this is unlimited until the proxy_time
out limit is reached.

The reuseport parameter instructs NGINX to create an individual
listening socket for each worker process. This allows the kernel to
distibute incoming connections between worker processes to handle
multiple packets being sent between client and server. The reuse
port feature works only on Linux kernels 3.9 and higher, DragonFly
BSD, and FreeBSD 12 and higher.

2.4 Load-Balancing Methods

Problem

Round-robin load balancing doesn’t fit your use case because you
have heterogeneous workloads or server pools.

Solution

Use one of NGINX’s load-balancing methods such as least connec-
tions, least time, generic hash, IP hash, or random:

upstream backend {
least_conn;
server backend.example.com;

14 | Chapter2: High-Performance Load Balancing

server backendl.example.com;

}

This example sets the load-balancing algorithm for the backend
upstream pool to be least connections. All load-balancing algo-
rithms, with the exception of generic hash, random, and least-time,
are standalone directives, such as the preceding example. The
parameters to these directives are explained in the following discus-
sion.

Discussion

Not all requests or packets carry equal weight. Given this, round
robin, or even the weighted round robin used in previous examples,
will not fit the need of all applications or traffic flow. NGINX pro-
vides a number of load-balancing algorithms that you can use to fit
particular use cases. In addition to being able to choose these load-
balancing algorithms or methods, you can also configure them. The
following load-balancing methods are available for upstream HTTP,
TCP, and UDP pools.

Round robin

This is the default load-balancing method, which distributes
requests in the order of the list of servers in the upstream pool.
You can also take weight into consideration for a weighted
round robin, which you can use if the capacity of the upstream
servers varies. The higher the integer value for the weight, the
more favored the server will be in the round robin. The algo-
rithm behind weight is simply statistical probability of a weigh-
ted average.

Least connections
This method balances load by proxying the current request to
the upstream server with the least number of open connections.
Least connections, like round robin, also takes weights into
account when deciding to which server to send the connection.
The directive name is least_conn.

Least time
Available only in NGINX Plus, least time is akin to least con-
nections in that it proxies to the upstream server with the least
number of current connections but favors the servers with the
lowest average response times. This method is one of the most

2.4load-Balancing Methods | 15

sophisticated load-balancing algorithms and fits the needs of
highly performant web applications. This algorithm is a value-
add over least connections because a small number of connec-
tions does not necessarily mean the quickest response. A
parameter of header or last_byte must be specified for this
directive. When header is specified, the time to receive the
response header is used. When last_byte is specified, the time
to receive the full response is used. The directive name is
least_time.

Generic hash

The administrator defines a hash with the given text, variables
of the request or runtime, or both. NGINX distributes the load
among the servers by producing a hash for the current request
and placing it against the upstream servers. This method is very
useful when you need more control over where requests are sent
or for determining which upstream server most likely will have
the data cached. Note that when a server is added or removed
from the pool, the hashed requests will be redistributed. This
algorithm has an optional parameter, consistent, to minimize
the effect of redistribution. The directive name is hash.

Random

This method is used to instruct NGINX to select a random
server from the group, taking server weights into consideration.
The optional two [method] parameter directs NGINX to ran-
domly select two servers and then use the provided load-
balancing method to balance between those two. By default the
least_conn method is used if two is passed without a
method. The directive name for random load balancing is
random.

IP hash

This method works only for HTTP. IP hash uses the client IP
address as the hash. Slightly different from using the remote
variable in a generic hash, this algorithm uses the first three
octets of an IPv4 address or the entire IPv6 address. This
method ensures that clients are proxied to the same upstream
server as long as that server is available, which is extremely
helpful when the session state is of concern and not handled by
shared memory of the application. This method also takes the

16

Chapter 2: High-Performance Load Balancing

weight parameter into consideration when distributing the
hash. The directive name is ip_hash.

2.5 Sticky Cookie

Problem

You need to bind a downstream client to an upstream server using
NGINX Plus.

Solution

Use the sticky cookie directive to instruct NGINX Plus to create
and track a cookie:

upstream backend {
server backendl.example.com;
server backend2.example.com;
sticky cookie
affinity
expires=1h
domain=.example.com
httponly
secure
path=/;
}
This configuration creates and tracks a cookie that ties a down-
stream client to an upstream server. In this example, the cookie is
named affinity, is set for example.com, expires in an hour, cannot
be consumed client-side, can be sent only over HTTPS, and is valid
for all paths.

Discussion

Using the cookie parameter on the sticky directive creates a cookie
on the first request that contains information about the upstream
server. NGINX Plus tracks this cookie, enabling it to continue
directing subsequent requests to the same server. The first positional
parameter to the cookie parameter is the name of the cookie to be
created and tracked. Other parameters offer additional control
informing the browser of the appropriate usage, like the expiry time,
domain, path, and whether the cookie can be consumed client side
or whether it can be passed over unsecure protocols.

2.5 Sticky Cookie | 17

2.6 Sticky Learn

Problem

You need to bind a downstream client to an upstream server by
using an existing cookie with NGINX Plus.

Solution

Use the sticky learn directive to discover and track cookies that
are created by the upstream application:

upstream backend {
server backendl.example.com:8080;
server backend2.example.com:8081;

sticky learn
create=Supstream_cookie_cookiename
lookup=S$cookie_cookiename
zone=client_sessions:2m;

}

This example instructs NGINX to look for and track sessions by
looking for a cookie named COOKIENAME in response headers, and
looking up existing sessions by looking for the same cookie on
request headers. This session affinity is stored in a shared memory
zone of 2 MB that can track approximately 16,000 sessions. The
name of the cookie will always be application specific. Commonly
used cookie names, such as jsessionid or phpsessionid, are typi-
cally defaults set within the application or the application server
configuration.

Discussion

When applications create their own session-state cookies, NGINX
Plus can discover them in request responses and track them. This
type of cookie tracking is performed when the sticky directive is
provided the learn parameter. Shared memory for tracking cookies
is specified with the zone parameter, with a name and size. NGINX
Plus is directed to look for cookies in the response from the
upstream server via specification of the create parameter, and
searches for prior registered server affinity using the lookup param-

18 | Chapter2: High-Performance Load Balancing

eter. The value of these parameters are variables exposed by the HTTP
module.

2.7 Sticky Routing

Problem

You need granular control over how your persistent sessions are
routed to the upstream server with NGINX Plus.

Solution

Use the sticky directive with the route parameter to use variables
about the request to route:

map Scookie_jsessionid $route_cookie {
~.+\.(?P<route>\w+)$ Sroute;

}

map S$request_uri $route_uri {
~jsessionid=.+\.(?P<route>\w+)$ Sroute;

}

upstream backend {
server backendl.example.com route=a;
server backend2.example.com route=b;

sticky route $route_cookie $route_uri;
}

This example attempts to extract a Java session ID, first from a
cookie by mapping the value of the Java session ID cookie to a vari-
able with the first map block, and second by looking into the request
URI for a parameter called jsessionid, mapping the value to a vari-
able using the second map block. The sticky directive with the
route parameter is passed any number of variables. The first non-
zero or nonempty value is used for the route. If a jsessionid cookie
is used, the request is routed to backendi; if a URI parameter is
used, the request is routed to backend2. Although this example is
based on the Java common session ID, the same applies for other
session technology like phpsessionid, or any guaranteed unique
identifier your application generates for the session ID.

2.7 Sticky Routing | 19

Discussion

Sometimes, you might want to direct traffic to a particular server
with a bit more granular control. The route parameter to the
sticky directive is built to achieve this goal. Sticky route gives you
better control, actual tracking, and stickiness, as opposed to the
generic hash load-balancing algorithm. The client is first routed to
an upstream server based on the route specified, and then subse-
quent requests will carry the routing information in a cookie or the
URI. Sticky route takes a number of positional parameters that are
evaluated. The first nonempty variable is used to route to a server.
Map blocks can be used to selectively parse variables and save them
as other variables to be used in the routing. Essentially, the sticky
route directive creates a session within the NGINX Plus shared
memory zone for tracking any client session identifier you specify to
the upstream server, consistently delivering requests with this ses-
sion identifier to the same upstream server as its original request.

2.8 Connection Draining

Problem

You need to gracefully remove servers for maintenance or other rea-
sons while still serving sessions with NGINX Plus.

Solution

Use the drain parameter through the NGINX Plus API, described in
more detail in Chapter 5, to instruct NGINX to stop sending new
connections that are not already tracked:

$ curl -X POST -d '{"drain":true}' \
'http://nginx.local/api/3/http/upstreams/backend/servers/0'’

{
"id":0,
"server":"172.17.0.3:80",
"weight":1,

"max_conns":0,
"max_fails":1,
"fail_timeout":
"10s","slow_start":
"0s",

"route":"",

20 | Chapter 2: High-Performance Load Balancing

"backup":false,
"down":false,
"drain":true

}
Discussion

When session state is stored locally to a server, connections and per-
sistent sessions must be drained before it’s removed from the pool.
Draining connections is the process of letting sessions to a server
expire natively before removing the server from the upstream pool.
You can configure draining for a particular server by adding the
drain parameter to the server directive. When the drain parameter
is set, NGINX Plus stops sending new sessions to this server but
allows current sessions to continue being served for the length of
their session. You can also toggle this configuration by adding the
drain parameter to an upstream server directive.

2.9 Passive Health Checks

Problem

You need to passively check the health of upstream servers.

Solution

Use NGINX health checks with load balancing to ensure that only
healthy upstream servers are utilized:

upstream backend {
server backendl.example.com:1234 max_fails=3 fail_timeout=3s;
server backend2.example.com:1234 max_fails=3 fail_timeout=3s;

}
This configuration passively monitors the upstream health, setting
the max_fails directive to three, and fail_timeout to three sec-

onds. These directive parameters work the same way in both stream
and HTTP servers.

Discussion

Passive health checking is available in the Open Source version of
NGINX. Passive monitoring watches for failed or timed-out connec-
tions as they pass through NGINX as requested by a client. Passive

2.9 Passive Health Checks | 21

health checks are enabled by default; the parameters mentioned here
allow you to tweak their behavior. Monitoring for health is impor-
tant on all types of load balancing, not only from a user experience
standpoint, but also for business continuity. NGINX passively moni-
tors upstream HTTP, TCP, and UDP servers to ensure that they’re
healthy and performing.

2.10 Active Health Checks

Problem

You need to actively check your upstream servers for health with
NGINX Plus.

Solution

For HT'TP, use the health_check directive in a location block:

http {
server {

location / {
proxy_pass http://backend;
health_check interval=2s
fails=2
passes=5
uri=/
match=welcome;
}
}
status is 200, content type is "text/html",
and body contains "Welcome to nginx!"
match welcome {
status 200;
header Content-Type = text/html;
body ~ "Welcome to nginx!";

}

This health check configuration for HTTP servers checks the health
of the upstream servers by making an HTTP request to the URI /'
every two seconds. The upstream servers must pass five consecutive
health checks to be considered healthy. They are considered unheal-
thy if they fail two consecutive checks. The response from the
upstream server must match the defined match block, which defines
the status code as 200, the header Content-Type value as 'text/

22 | Chapter 2: High-Performance Load Balancing

html', and the string "Welcome to nginx!" in the response body.
The HTTP match block has three directives: status, header, and
body. All three of these directives have comparison flags, as well.

Stream health checks for TCP/UDP services are very similar:

stream {
server {

listen 1234;

proxy_pass stream_backend;

health_check interval=10s
passes=2
fails=3;

health_check_timeout 5s;

}

In this example, a TCP server is configured to listen on port 1234,
and to proxy to an upstream set of servers, for which it actively
checks for health. The stream health_check directive takes all the
same parameters as in HTTP with the exception of uri, and the
stream version has a parameter to switch the check protocol to udp.
In this example, the interval is set to 10 seconds, requires two passes
to be considered healthy, and three fails to be considered unhealthy.
The active-stream health check is also able to verify the response
from the upstream server. The match block for stream servers, how-
ever, has just two directives: send and expect. The send directive is
raw data to be sent, and expect is an exact response or a regular
expression to match.

Discussion

Active health checks in NGINX Plus continually make requests to
the source servers to check their health. These health checks can
measure more than just the response code. In NGINX Plus, active
HTTP health checks monitor based on a number of acceptance cri-
teria of the response from the upstream server. You can configure
active health-check monitoring for how often upstream servers are
checked, how many times a server must pass this check to be con-
sidered healthy, how many times it can fail before being deemed
unhealthy, and what the expected result should be. The match
parameter points to a match block that defines the acceptance crite-
ria for the response. The match block also defines the data to send to

2.10 Active Health Checks | 23

the upstream server when used in the stream context for TCP/UPD.
These features enable NGINX to ensure that upstream servers are
healthy at all times.

2.11 Slow Start

Problem

Your application needs to ramp up before taking on full production
load.

Solution

Use the slow_start parameter on the server directive to gradually
increase the number of connections over a specified time as a server
is reintroduced to the upstream load-balancing pool:

upstream {
zone backend 64k;

server serverl.example.com slow_start=20s;
server server2.example.com slow_start=15s;

}

The server directive configurations will slowly ramp up traffic to
the upstream servers after theyre reintroduced to the pool. server1
will slowly ramp up its number of connections over 20 seconds, and
server2 over 15 seconds.

Discussion

Slow start is the concept of slowly ramping up the number of
requests proxied to a server over a period of time. Slow start allows
the application to warm up by populating caches, initiating database
connections without being overwhelmed by connections as soon as
it starts. This feature takes effect when a server that has failed health
checks begins to pass again and re-enters the load-balancing pool.

24 | Chapter 2: High-Performance Load Balancing

2.12 TCP Health Checks

Problem

You need to check your upstream TCP server for health and remove
unhealthy servers from the pool.

Solution

Use the health_check directive in the server block for an active
health check:

stream {
server {
listen 3306;
proxy_pass read_backend;
health_check interval=10 passes=2 fails=3;

}

The example monitors the upstream servers actively. The upstream
server will be considered unhealthy if it fails to respond to three or
more TCP connections initiated by NGINX. NGINX performs the
check every 10 seconds. The server will only be considered healthy
after passing two health checks.

Discussion

TCP health can be verified by NGINX Plus either passively or
actively. Passive health monitoring is done by noting the communi-
cation between the client and the upstream server. If the upstream
server is timing out or rejecting connections, a passive health check
will deem that server unhealthy. Active health checks will initiate
their own configurable checks to determine health. Active health
checks not only test a connection to the upstream server, but can
expect a given response.

2.12TCP Health Checks | 25

CHAPTER 3
Traffic Management

3.0 Introduction

NGINX and NGINX Plus are also classified as web traffic control-
lers. You can use NGINX to intellengently route traffic and control
flow based on many attributes. This chapter covers NGINX’s ability
to split client requests based on percentages, utilize geographical
location of the clients, and control the flow of traffic in the form of
rate, connection, and bandwidth limiting. As you read through this
chapter, keep in mind that you can mix and match these features to
enable countless possibilities.

3.1A/B Testing

Problem

You need to split clients between two or more versions of a file or
application to test acceptance.

Solution

Use the split_clients module to direct a percentage of your clients
to a different upstream pool:

split_clients "${remote_addr}AAA" Svariant {
20.0% "backendv2";
* "backendv1";

27

The split_clients directive hashes the string provided by you as
the first parameter and divides that hash by the percentages pro-
vided to map the value of a variable provided as the second parame-
ter. The third parameter is an object containing key-value pairs
where the key is the percentage weight and the value is the value to
be assigned. The key can be either a percentage or an asterisk. The
asterisk denotes the rest of the whole after all percentages are taken.
The value of the $variant variable will be backendv2 for 20% of cli-
ent IP addresses and backendv1 for the remaining 80%.

In this example, backendvl and backendv2 represent upstream
server pools and can be used with the proxy_pass directive as such:

location / {
proxy_pass http://$variant
}
Using the variable $variant, our traffic will split between two differ-
ent application server pools.

Discussion

This type of A/B testing is useful when testing different types of
marketing and frontend features for conversion rates on ecommerce
sites. Its common for applications to use a type of deployment called
canary release. In this type of deployment, traffic is slowly switched
over to the new version. Splitting your clients between different ver-
sions of your application can be useful when rolling out new ver-
sions of code, to limit the blast radius in case of an error. Whatever
the reason for splitting clients between two different application
sets, NGINX makes this simple through the use of this split_cli
ents module.

Also See

split_client Documentation

3.2 Using the GeolP Module and Database

Problem

You need to install the GeoIP database and enable its embedded
variables within NGINX to log and specify to your application the
location of your clients.

28 | Chapter 3: Traffic Management

Solution

The official NGINX Open Source package repository, configured
in Chapter 1 when installing NGINX, provides a package named
nginx-module-geoip. When using the NGINX Plus package
repository, this package 1is named nginx-plus-module-
geoip. These packages install the dynamic version of the GeoIP
module.

RHEL/CentOS NGINX Open Source:
yum install nginx-module-geoip
Debian/Ubuntu NGINX Open Source:
apt-get install nginx-module-geoip
RHEL/CentOS NGINX Plus:
yum install nginx-plus-module-geoip
Debian/Ubuntu NGINX Plus:
apt-get install nginx-plus-module-geoip
Download the GeolP country and city databases and unzip them:

mkdir /etc/nginx/geoip

cd /etc/nginx/geoip

wget "http://geolite.maxmind.com/\
download/geoip/database/GeoLiteCountry/GeoIP.dat.gz"
gunzip GeoIP.dat.gz

wget "http://geolite.maxmind.com/\
download/geoip/database/GeoLiteCity.dat.gz"

gunzip GeoliteCity.dat.gz

This set of commands creates a geoip directory in the /etc/nginx

directory, moves to this new directory, and downloads and unzips
the packages.

With the GeolP database for countries and cities on the local disk,
you can now instruct the NGINX GeolIP module to use them to
expose embedded variables based on the client IP address:

load_module "/usr/1ib64/nginx/modules/ngx_http_geoip_module.so";

http {
geoip_country /etc/nginx/geoip/GeoIP.dat;
geoip_city /etc/nginx/geoip/GeolLiteCity.dat;

3.2 Using the GeolP Module and Database | 29

The load_module directive dynamically loads the module from its
path on the filesystem. The load_module directive is only valid in
the main context. The geoip_country directive takes a path to the
GeoIPdat file containing the database mapping IP addresses to
country codes and is valid only in the HTTP context.

Discussion

The geoip_country and geoip_city directives expose a number of
embedded variables available in this module. The geoip_country
directive enables variables that allow you to distinguish the country
of origin of your client. These variables include $geoip_coun
try_code, $geoip_country_code3, and $geoip_country_name. The
country code variable returns the two-letter country code, and the
variable with a 3 at the end returns the three-letter country code.
The country name variable returns the full name of the country.

The geoip_city directive enables quite a few variables. The
geoip_city directive enables all the same variables as the
geoip_country directive, just with different names, such as
$geoip_city_country_code, $geoip_city_country_code3, and
$geoip_city_country_name. Other variables include $geoip_city,
$geoip_city_continent_code, S$geoip_latitude, S$geoip_longi
tude, and $geoip_postal_code, all of which are descriptive of the
value they return. S$geoip_region and $geoip_region_name
describe the region, territory, state, province, federal land, and the
like. Region is the two-letter code, where region name is the full
name. $geoip_area_code, only valid in the US, returns the three-
digit telephone area code.

With these variables, you're able to log information about your cli-
ent. You could optionally pass this information to your application
as a header or variable, or use NGINX to route your traffic in partic-
ular ways.

Also See
GeolP Update

30 | Chapter 3: Traffic Management

3.3 Restricting Access Based on Country

Problem

You need to restrict access from particular countries for contractual
or application requirements.

Solution
Map the country codes you want to block or allow to a variable:

load_module
"/usr/1ib64/nginx/modules/ngx_http_geoip_module.so";

http {
map $geoip_country_code S$country_access {
"us" 0;
"RU" 0;
default 1;
}
}

This mapping will set a new variable $country_access toa 1 or a 0.
If the client IP address originates from the US or Russia, the variable
will be set to a 0. For any other country, the variable will be set to a
1.

Now, within our server block, we'll use an if statement to deny
access to anyone not originating from the US or Russia:

server {
if (Scountry_access = '1') {
return 403;
}
}

This if statement will evaluate True if the Scountry_access variable
is set to 1. When True, the server will return a 403 unauthorized.
Otherwise the server operates as normal. So this if block is only
there to deny people who are not from the US or Russia.

Discussion

This is a short but simple example of how to only allow access from
a couple of countries. This example can be expounded upon to fit

3.3 Restricting Access Based on Country | 31

your needs. You can utilize this same practice to allow or block
based on any of the embedded variables made available from the
GeolP module.

3.4 Finding the Original Client

Problem

You need to find the original client IP address because there are
proxies in front of the NGINX server.

Solution

Use the geoip_proxy directive to define your proxy IP address range

and the geoip_proxy_recursive directive to look for the original
IP:

load_module "/usr/1ib64/nginx/modules/ngx_http_geoip_module.so";

http {
geoip_country /etc/nginx/geoip/GeoIP.dat;
geoip_city /etc/nginx/geoip/GeolLiteCity.dat;
geoip_proxy 10.0.16.0/26;
geoip_proxy_recursive on;

The geoip_proxy directive defines a CIDR range in which our
proxy servers live and instructs NGINX to utilize the X-Forwarded-
For header to find the «client IP address. The
geoip_proxy_recursive directive instructs NGINX to recursively
look through the X-Forwarded-For header for the last client IP
known.

Discussion

You may find that if youre using a proxy in front of NGINX,
NGINX will pick up the proxy’s IP address rather than the clients.
For this you can use the geoip_proxy directive to instruct NGINX
to use the X-Forwarded-For header when connections are opened
from a given range. The geoip_proxy directive takes an address or a
CIDR range. When there are multiple proxies passing traffic in front
of NGINX, you can use the geoip_proxy_recursive directive to
recursively search through X-Forwarded-For addresses to find the

32 | Chapter 3: Traffic Management

originating client. You will want to use something like this when uti-
lizing load balancers such as AWS ELB, Google’s load balancer, or
Azure’s load balancer in front of NGINX.

3.5 Limiting Connections

Problem

You need to limit the number of connections based on a predefined
key, such as the client’s IP address.

Solution

Construct a shared memory zone to hold connection metrics, and
use the limit_conn directive to limit open connections:

http {
limit_conn_zone $binary_remote_addr zone=limitbyaddr:106m;
limit_conn_status 429;

server {

limit_conn limitbyaddr 40;

}

This configuration creates a shared memory zone named limit
byaddr. The predefined key used is the client’s IP address in binary
form. The size of the shared memory zone is set to 10 mega-
bytes. The 1limit_conn directive takes two parameters: a
1imit_conn_zone name, and the number of connections allowed.
The limit_conn_status sets the response when the connections are
limited to a status of 429, indicating too many
requests. The limit_conn and limit_conn_status directives are
valid in the HTTP, server, and location context.

Discussion

Limiting the number of connections based on a key can be used to
defend against abuse and share your resources fairly across all your
clients. It is important to be cautious with your predefined key.
Using an IP address, as we are in the previous example, could be
dangerous if many users are on the same network that originates
from the same IP, such as when behind a Network Address Transla-

3.5 Limiting Connections | 33

tion (NAT). The entire group of clients will be limited. The
limit_conn_zone directive is only valid in the HTTP context. You
can utilize any number of variables available to NGINX within the
HTTP context in order to build a string on which to limit by. Utiliz-
ing a variable that can identify the user at the application level, such
as a session cookie, may be a cleaner solution depending on the use
case. The 1imit_conn_status defaults to 503, service unavailable.
You may find it preferable to use a 429, as the service is available,
and 500-level responses indicate server error whereas 400-level
responses indicate client error.

3.6 Limiting Rate

Problem

You need to limit the rate of requests by a predefined key, such as
the client’s IP address.

Solution

Utilize the rate-limiting module to limit the rate of requests:

http {
limit_req_zone $binary_remote_addr
zone=1limitbyaddr:10m rate=1r/s;
limit_req_status 429;

server {
limit_req zone=limitbyaddr burst=10 nodelay;

}
}
This example configuration creates a shared memory zone named
limitbyaddr. The predefined key used is the clients IP address in
binary form. The size of the shared memory zone is set to 10 mega-
bytes. The zone sets the rate with a keyword argument. The
limit_req directive takes two optional keyword arguments: zone
and burst. zone is required to instruct the directive on which shared
memory request limit zone to use. When the request rate for a given
zone is exceeded, requests are delayed until their maximum burst
size is reached, denoted by the burst keyword argument. The burst
keyword argument defaults to zero. limit_req also takes a third

34 | Chapter 3: Traffic Management

optional parameter, nodelay. This parameter enables the client to
use its burst without delay before being limited. 1imit_req_status
sets the status returned to the client to a particular HTTP status
code; the default is 503. 1imit_req_status and limit_req are valid
in the context of HTTP, server, and location. limit_req_zone is
only valid in the HTTP context. Rate limiting is cluster-aware in
NGINX Plus, new in version R16.

Discussion

The rate-limiting module is very powerful for protecting against
abusive rapid requests while still providing a quality service to
everyone. There are many reasons to limit rate of request, one being
security. You can deny a brute-force attack by putting a very strict
limit on your login page. You can set a sane limit on all requests,
thereby disabling the plans of malicious users who might try to deny
service to your application or to waste resources. The configuration
of the rate-limit module is much like the preceding connection-
limiting module described in Recipe 3.5, and much of the same con-
cerns apply. You can specify the rate at which requests are limited in
requests per second or requests per minute. When the rate limit is
reached, the incident is logged. There’s also a directive not in the
example, limit_req_log_level, which defaults to error, but can be
set to info, notice, or warn. New in NGINX Plus, version R16 rate
limiting is now cluster-aware (see Recipe 12.5 for a zone sync exam-

ple).

3.7 Limiting Bandwidth

Problem

You need to limit download bandwidth per client for your assets.

Solution

Utilize NGINX’s limit_rate and limit_rate_after directives to
limit the rate of response to a client:

location /download/ {
limit_rate_after 10m;
limit_rate 1m;

3.7 Limiting Bandwidth | 35

The configuration of this location block specifies that for URIs with
the prefix download, the rate at which the response will be served to
the client will be limited after 10 megabytes to a rate of 1 megabyte
per second. The bandwidth limit is per connection, so you may want
to institute a connection limit as well as a bandwidth limit where
applicable.

Discussion

Limiting the bandwidth for particular connections enables NGINX
to share its upload bandwidth across all of the clients in a manner
you specify. These two directives do it all: limit_rate_after and
limit_rate. The limit_rate_after directive can be set in almost
any context: HTTDP, server, location, and if when the if is within a
location. The limit_rate directive is applicable in the same con-
texts as limit_rate_after; however, it can alternatively be set by
setting a variable named $limit_rate. The limit_rate_after
directive specifies that the connection should not be rate limited
until after a specified amount of data has been transferred. The
limit_rate directive specifies the rate limit for a given context in
bytes per second by default. However, you can specify m for mega-
bytes or g for gigabytes. Both directives default to a value of 0. The
value 0 means not to limit download rates at all. This module allows
you to programmatically change the rate limit of clients.

36 | Chapter 3:Traffic Management

CHAPTER 4

Massively Scalable
Content Caching

4.0 Introduction

Caching accelerates content serving by storing request responses to
be served again in the future. Content caching reduces load to
upstream servers, caching the full response rather than running
computations and queries again for the same request. Caching
increases performance and reduces load, meaning you can serve
faster with fewer resources. Scaling and distributing caching servers
in strategic locations can have a dramatic effect on user experience.
It's optimal to host content close to the consumer for the best perfor-
mance. You can also cache your content close to your users. This is
the pattern of content delivery networks, or CDNs. With NGINX
you're able to cache your content wherever you can place an NGINX
server, effectively enabling you to create your own CDN. With
NGINX caching, you're also able to passively cache and serve cached
responses in the event of an upstream failure.

4.1 Caching Zones

Problem

You need to cache content and need to define where the cache is
stored.

37

Solution

Use the proxy_cache_path directive to define shared memory cache
zones and a location for the content:

proxy_cache_path /var/nginx/cache
keys_zone=CACHE: 60m
levels=1:2
inactive=3h
max_size=20g;
proxy_cache CACHE;
The cache definition example creates a directory for cached respon-
ses on the filesystem at /var/nginx/cache and creates a shared mem-
ory space named CACHE with 60 megabytes of memory. This
example sets the directory structure levels, defines the release of
cached responses after they have not been requested in 3 hours, and
defines a maximum size of the cache of 20 gigabytes. The
proxy_cache directive informs a particular context to use the cache
zone. The proxy_cache_path is valid in the HTTP context, and the
proxy_cache directive is valid in the HTTP, server, and location
contexts.

Discussion

To configure caching in NGINX, it’s necessary to declare a path and
zone to be used. A cache zone in NGINX is created with the direc-
tive proxy_cache_path. The proxy_cache_path designates a loca-
tion to store the cached information and a shared memory space to
store active keys and response metadata. Optional parameters to this
directive provide more control over how the cache is maintained
and accessed. The levels parameter defines how the file structure is
created. The value is a colon-separated value that declares the length
of subdirectory names, with a maximum of three levels. NGINX
caches based on the cache key, which is a hashed value. NGINX then
stores the result in the file structure provided, using the cache key as
a file path and breaking up directories based on the levels value.
The inactive parameter allows for control over the length of time a
cache item will be hosted after its last use. The size of the cache is
also configurable with the use of the max_size parameter. Other
parameters relate to the cache-loading process, which loads the

cache keys into the shared memory zone from the files cached on
disk.

38 | Chapter4: Massively Scalable Content Caching

4.2 Caching Hash Keys

Problem

You need to control how your content is cached and looked up.

Solution

Use the proxy_cache_key directive along with variables to define
what constitutes a cache hit or miss:

proxy_cache_key "$host$request_uri $cookie_user";

This cache hash key will instruct NGINX to cache pages based on
the host and URI being requested, as well as a cookie that defines
the user. With this you can cache dynamic pages without serving
content that was generated for a different user.

Discussion

The default proxy_cache_key, which will fit most use cases, is
"$scheme$proxy_hostSrequest_uri". The variables used include
the scheme, HTTP or HTTPS, the proxy_host, where the request is
being sent, and the request URI. All together, this reflects the URL
that NGINX is proxying the request to. You may find that there are
many other factors that define a unique request per applica-
tion, such as request arguments, headers, session identifiers, and so
on, to which you’ll want to create your own hash key.!

Selecting a good hash key is very important and should be thought
through with understanding of the application. Selecting a cache key
for static content is typically pretty straightforward; using the host-
name and URI will suffice. Selecting a cache key for fairly dynamic
content like pages for a dashboard application requires more knowl-
edge around how users interact with the application and the degree
of variance between user experiences. Due to security concerns you
may not want to present cached data from one user to another
without fully understanding the context. The proxy_cache_key
directive configures the string to be hashed for the cache key. The

1 Any combination of text or variables exposed to NGINX can be used to form a cache
key. A list of variables is available in NGINX: http://nginx.org/en/docs/varindex.html.

4.2 Caching Hash Keys | 39

proxy_cache_key can be set in the context of HT'TP, server, and
location blocks, providing flexible control on how requests are
cached.

4.3 Cache Bypass

Problem

You need the ability to bypass the caching.
Solution

Use the proxy_cache_bypass directive with a nonempty or nonzero
value. One way to do this is by setting a variable within location
blocks that you do not want cached to equal 1:

proxy_cache_bypass $http_cache_bypass;

The configuration tells NGINX to bypass the cache if the HTTP
request header named cache_bypass is set to any value that is not 0.

Discussion

There are a number of scenarios that demand that the request is not
cached. For this, NGINX exposes a proxy_cache_bypass directive
so that when the value is nonempty or nonzero, the request will be
sent to an upstream server rather than be pulled from the cache.
Different needs and scenarios for bypassing cache will be dictated by
your applications use case. Techniques for bypassing cache can be as
simple as a using a request or response header, or as intricate as
multiple map blocks working together.

For many reasons, you may want to bypass the cache. One impor-
tant reason is troubleshooting and debugging. Reproducing issues
can be hard if youre consistently pulling cached pages or if your
cache key is specific to a user identifier. Having the ability to bypass
the cache is vital. Options include but are not limited to bypassing
the cache when a particular cookie, header, or request argument is
set. You can also turn off the cache completely for a given context
such as a location block by setting proxy_cache off;.

40 | Chapter4: Massively Scalable Content Caching

4.4 Cache Performance

Problem

You need to increase performance by caching on the client side.

Solution

Use client-side cache control headers:

location ~* \.(css|js)$ {
expires 1y;
add_header Cache-Control "public";
}
This location block specifies that the client can cache the content of
CSS and JavaScript files. The expires directive instructs the client
that their cached resource will no longer be valid after one year. The
add_header directive adds the HTTP response header Cache-
Control to the response, with a value of public, which allows any
caching server along the way to cache the resource. If we specify pri-
vate, only the client is allowed to cache the value.

Discussion

Cache performance has many factors, disk speed being high on the
list. There are many things within the NGINX configuration you
can do to assist with cache performance. One option is to set head-
ers of the response in such a way that the client actually caches the
response and does not make the request to NGINX at all, but simply
serves it from its own cache.

4.5 Purging
Problem

You need to invalidate an object from the cache.

Solution

Use the purge feature of NGINX Plus, the proxy_cache_purge
directive, and a nonempty or zero-value variable:

4.4 Cache Performance | 41

map S$request_method Spurge_method {

PURGE 1;
default 0;
}
server {
location / {
proxy_cache_purge $purge_method;
}
}

In this example, the cache for a particular object will be purged if it’s
requested with a method of PURGE. The following is a curl example
of purging the cache of a file named main. js:

$ curl -XPURGE localhost/main.js
Discussion

A common way to handle static files is to put a hash of the file in the
filename. This ensures that as you roll out new code and content,
your CDN recognizes it as a new file because the URI has changed.
However, this does not exactly work for dynamic content to which
you've set cache keys that don't fit this model. In every caching sce-
nario, you must have a way to purge the cache. NGINX Plus has
provided a simple method of purging cached responses. The
proxy_cache_purge directive, when passed a nonzero or nonempty
value, will purge the cached items matching the request. A simple
way to set up purging is by mapping the request method for PURGE.
However, you may want to use this in conjunction with the geo_ip
module or simple authentication to ensure that not anyone can
purge your precious cache items. NGINX has also allowed for the
use of *, which will purge cache items that match a common URI
prefix. To use wildcards you will need to configure your
proxy_cache_path directive with the purger=on argument.

4.6 Cache Slicing

Problem

You need to increase caching effiency by segmenting the file into
fragments.

42 | Chapter4: Massively Scalable Content Caching

Solution

Use the NGINX slice directive and its embedded variables to
divide the cache result into fragments:

proxy_cache_path /tmp/mycache keys_zone=mycache:16m;
server {

proxy_cache mycache;

slice 1m;

proxy_cache_key $hostSuri$is_args$argsS$Sslice_range;
proxy_set_header Range S$slice_range;
proxy_http_version 1.1;

proxy_cache_valid 200 206 1h;

location / {
proxy_pass http://origin:80;
}
}

Discussion

This configuration defines a cache zone and enables it for the server.
The slice directive is then used to instruct NGINX to slice the
response into 1 MB file segments. The cache files are stored accord-
ing to the proxy_cache_key directive. Note the use of the embedded
variable named slice_range. That same variable is used as a header
when making the request to the origin, and that request HTTP ver-
sion is upgraded to HTTP/1.1 because 1.0 does not support byte-
range requests. The cache validity is set for response codes of 200 or
206 for one hour, and then the location and origins are defined.

The Cache Slice module was developed for delivery of HTML5
video, which uses byte-range requests to pseudostream content to
the browser. By default, NGINX is able to serve byte-range requests
from its cache. If a request for a byte-range is made for uncached
content, NGINX requests the entire file from the origin. When you
use the Cache Slice module, NGINX requests only the necessary
segments from the origin. Range requests that are larger than the
slice size, including the entire file, trigger subrequests for each of the
required segments, and then those segments are cached. When all of
the segments are cached, the response is assembled and sent to the
client, enabling NGINX to more efficiently cache and serve content
requested in ranges. The Cache Slice module should be used only on
large files that do not change. NGINX validates the ETag each time

4.6 Cache Slicing | 43

it receives a segment from the origin. If the ETag on the origin
changes, NGINX aborts the transaction because the cache is no
longer valid. If the content does change and the file is smaller or
your origin can handle load spikes during the cache fill process, it’s
better to use the Cache Lock module described in the blog listed in
the following Also See section.

Also See

Smart and Efficient Byte-Range Caching with NGINX & NGINX
Plus

44 | Chapter 4: Massively Scalable Content Caching

CHAPTER 5
Programmability and Automation

5.0 Introduction

Programmability refers to the ability to interact with something
through programming. The API for NGINX Plus provides just that:
the ability to interact with the configuation and behavior of NGINX
Plus through an HTTP interface. This API provides the ability to
reconfigure NGINX Plus by adding or removing upstream servers
through HTTP requests. The key-value store feature in NGINX Plus
enables another level of dynamic configuration—you can utilize
HTTP calls to inject information that NGINX Plus can use to route
or control traffic dynamically. This chapter will touch on the
NGINX Plus API and the key-value store module exposed by that
same APL

Configuration management tools automate the installation and con-
figuration of servers, which is an invaluable utility in the age of the
cloud. Engineers of large-scale web applications no longer need to
configure servers by hand; instead, they can use one of the many
configuration management tools available. With these tools, engi-
neers can write configurations and code one time to produce many
servers with the same configuration in a repeatable, testable, and
modular fashion. This chapter covers a few of the most popular con-
figuration management tools available and how to use them to
install NGINX and template a base configuration. These examples
are extremely basic but demonstrate how to get an NGINX server
started with each platform.

45

5.1 NGINX Plus API

Problem

You have a dynamic environment and need to reconfigure NGINX
Plus on the fly.

Solution
Configure the NGINX Plus API to enable adding and removing
servers through API calls:

upstream backend {
zone http_backend 64k;

}
server {
...
location /api {
apil [write=on];
Directives limiting access to the API
See chapter 7
}
location = /dashboard.html {
root /usr/share/nginx/html;
}
}

This NGINX Plus configuration creates an upstream server with a
shared memory zone, enables the API in the /api location block,
and provides a location for the NGINX Plus dashboard.

You can utilize the API to add servers when they come online:

$ curl -X POST -d '{"server":"172.17.0.3"}' \
'http://nginx.local/api/3/http/upstreams/backend/servers/'

{
"id":0,
"server":"172.17.0.3:80",
"weight":1,

"max_conns":0,
"max_fails":1,
"fail_timeout”:"10s",
"slow_start":"0s",
"route":"",
"backup":false,
"down":false

46 | Chapter5: Programmability and Automation

The curl call in this example makes a request to NGINX Plus to add
a new server to the backend upstream configuration. The HTTP
method is a POST, and a JSON object is passed as the body. The
NGINX Plus API is RESTful; therefore, there are parameters in the
request URI. The format of the URI is as follows:

/api/{version}/http/upstreams/{httpUpstreamName}/servers/

You can utilize the NGINX Plus API to list the servers in the
upstream pool:

$ curl 'http://nginx.local/api/3/http/upstreams/backend/servers/"'

[
{
"{d":0,
"server":"172.17.0.3:80",
"weight":1,
"max_conns":0,
"max_fails":1,
"fail_timeout":"10s",
"slow_start":"0s",
"route":"",
"backup":false,
"down":false
}
1

The curl call in this example makes a request to NGINX Plus to list
all of the servers in the upstream pool named backend. Currently,
we have only the one server that we added in the previous curl call
to the API. The request will return a upstream server object that
contains all of the configurable options for a server.

Use the NGINX Plus API to drain connections from an upstream
server, preparing it for a graceful removal from the upstream pool.
You can find details about connection draining in Recipe 2.8:

$ curl -X PATCH -d '{"drain":true}"' \
'http://nginx.local/api/3/http/upstreams/backend/servers/0'’

{
"1d":0,
"server":"172.17.0.3:80",
"weight":1,

"max_conns":0,
"max_fails":1,
"fail_timeout":
"10s","slow_start":
"es",

"route":"",

5.1NGINXPlusAPI | 47

"backup":false,
"down":false,
"drain":true

}

In this curl, we specify that the request method is PATCH, we pass a
JSON body instructing it to drain connections for the server, and
specity the server ID by appending it to the URI. We found the ID of
the server by listing the servers in the upstream pool in the previous
curl command.

NGINX Plus will begin to drain the connections. This process can
take as long as the length of the sessions of the application. To check
in on how many active connections are being served by the server
you've begun to drain, use the following call and look for the active
attribute of the server being drained:

$ curl 'http://nginx.local/api/3/http/upstreams/backend’
{

"zone" : "http_backend",
"keepalive" : 0,
"peers" : [
{
"backup" : false,
"id" : 0,
"unavail" : 0,
"name" : "172.17.0.3",
"requests" : 0,
"received" : 0,
"state" : "draining",
"server" : "172.17.0.3:80",
"active" : 0,
"weight" : 1,
"fails" : 0,
"sent" : O,
"responses" : {
"4xx" : 0,
"total" : 0O,
"3xx" : 0,
"Sxx" : 0,
"2xx" . 0,
"1xx" : 0
}s

"health_checks" : {
"checks" : 0,
"unhealthy" : 0,
"fails" : 0

1,

"downtime" : 0

48 | Chapter5: Programmability and Automation

1

"zombies" : 0

After all connections have drained, utilize the NGINX Plus API to
remove the server from the upstream pool entirely:

$ curl -X DELETE \
'http://nginx.local/api/3/http/upstreams/backend/servers/0'
[]

The curl command makes a DELETE method request to the same
URI used to update the servers’ state. The DELETE method instructs
NGINX to remove the server. This API call returns all of the servers
and their IDs that are still left in the pool. Because we started with
an empty pool, added only one server through the API, drained it,
and then removed it, we now have an empty pool again.

Discussion

The NGINX Plus exclusive API enables dynamic application servers
to add and remove themselves to the NGINX configuration on the
fly. As servers come online, they can register themselves to the pool,
and NGINX will start sending it load. When a server needs to be
removed, the server can request NGINX Plus to drain its connec-
tions, and then remove itself from the upstream pool before it’s shut
down. This enables the infrastructure, through some automation, to
scale in and out without human intervention.

Also See

NGINX Plus API Swagger Documentation

5.2 Key-Value Store

Problem

You need NGINX Plus to make dynamic traffic management deci-
sions based on input from applications.

Solution

Set up the cluster-aware key-value store and API, and then add keys
and values:

5.2Key-ValueStore | 49

keyval_zone zone=blacklist:1M;
keyval S$remote_addr $num_failures zone=blacklist;

server {
...
location / {
if ($num_failures) {
return 403 'Forbidden';

}
return 200 'OK';

}
}

server {
...
Directives limiting access to the API
See chapter 6
location /api {
apil write=on;
}
}
This NGINX Plus configuration uses the keyval_zone directory to
build a key-value store shared memory zone named blacklist and
sets a memory limit of 1 MB. The keyval directive then maps the
value of the key matching the first parameter $remote_addr to a
new variable named $num_failures from the zone. This new vari-
able is then used to determine whether NGINX Plus should serve
the request or return a 403 Forbidden code.

After starting the NGINX Plus server with this configuration, you
can curl the local machine and expect to receive a 200 OK response.
$ curl 'http://127.0.0.1/'
0K
Now add the local machine’s IP address to the key-value store with a
value of 1:
$ curl -X POST -d '{"127.0.0.1":"1"}"' \
'http://127.0.0.1/api/3/http/keyvals/blacklist'
This curl command submits an HTTP POST request with a JSON
object containing a key-value object to be submitted to the blacklist

shared memory zone. The key-value store API URI is formatted as
follows:

/api/{version}/http/keyvals/{httpKeyvalZoneName}

The local machine’s IP address is now added to the key-value zone
named blacklist with a value of 1. In the next request, NGINX

50 | Chapter 5: Programmability and Automation

Plus looks up the $remote_addr in the key-value zone, finds the
entry, and maps the value to the variable $num_failures. This vari-
able is then evaluated in the if statement. When the variable has a
value, the if evaluates to True and NGINX Plus returns the 403 For-
bidden return code:

$ curl 'http://127.0.0.1/'
Forbidden

You can update or delete the key by making a PATCH method request:

$ curl -X PATCH -d '{"127.0.0.1":null}"' \
'http://127.0.0.1/api/3/http/keyvals/blacklist'
NGINX Plus deletes the key if the value is null, and requests will
again return 200 OK.

Discussion

The key-value store, an NGINX Plus exclusive feature, enables
applications to inject information into NGINX Plus. In the example
provided, the $remote_addr variable is used to create a dynamic
blacklist. You can populate the key-value store with any key that
NGINX Plus might have as a variable—a session cookie, for example
—and provide NGINX Plus an external value. In NGINX Plus R16,
the key-value store became cluster-aware, meaning that you have to
provide your key-value update to only one NGINX Plus server, and
all of them will receive the information.

Also See
Dynamic Bandwidth Limits

5.3 Installing with Puppet

Problem

You need to install and configure NGINX with Puppet to manage
NGINX configurations as code and conform with the rest of your
Puppet configurations.

Solution

Create a module that installs NGINX, manages the files you need,
and ensures that NGINX is running:

5.3 Installing with Puppet | 51

class nginx {
package {"nginx": ensure => 'installed',}
service {"nginx":
ensure => 'true',
hasrestart => 'true',
restart => '/etc/init.d/nginx reload',
}
file { "nginx.conf":
path => '/etc/nginx/nginx.conf',
require => Package['nginx'],
notify => Service['nginx'],
content => template('nginx/templates/nginx.conf.erb'),
user=>'root',
group=>'root',
mode='0644";

}

This module uses the package management utility to ensure the
NGINX package is installed. It also ensures NGINX is running and
enabled at boot time. The configuration informs Puppet that the
service has a restart command with the hasrestart directive, and
we can override the restart command with an NGINX reload. The
file resource will manage and template the nginx.conf file with the
Embedded Ruby (ERB) templating language. The templating of the
file will happen after the NGINX package is installed due to the
require directive. However, the file resource will notify the NGINX
service to reload because of the notify directive. The templated
configuration file is not included. However, it can be simple to
install a default NGINX configuration file, or very complex if using
ERB or EPP templating language loops and variable substitution.

Discussion

Puppet is a configuration management tool based in the Ruby pro-
gramming language. Modules are built in a domain-specific lan-
guage and called via a manifest file that defines the configuration for
a given server. Puppet can be run in a master-slave or masterless
configuration. With Puppet, the manifest is run on the master and
then sent to the slave. This is important because it ensures that the
slave is only delivered the configuration meant for it and no extra
configurations meant for other servers. There are a lot of extremely
advanced public modules available for Puppet. Starting from these
modules will help you get a jump-start on your configuration. A

52 | Chapter 5: Programmability and Automation

public NGINX module from voxpupuli on GitHub will template out
NGINX configurations for you.

Also See

Puppet Documentation

Puppet Package Documentation
Puppet Service Documentation
Puppet File Documentation
Puppet Templating Documentation
Voxpupuli NGINX Module

5.4 Installing with Chef

Problem

You need to install and configure NGINX with Chef to manage
NGINX configurations as code and conform with the rest of your
Chef configurations.

Solution

Create a cookbook with a recipe to install NGINX and configure
configuration files through templating, and ensure NGINX reloads
after the configuration is put in place. The following is an example
recipe:

package 'nginx' do
action :install
end

service 'nginx' do
supports :status => true, :restart => true, :reload => true
action [:start, :enable]

end

template 'nginx.conf' do
path "/etc/nginx.conf"
source "nginx.conf.erb"
owner 'root'
group 'root’

mode '0644'
notifies :reload, 'service[nginx]', :delayed
end

5.4 Installing with Chef | 53

The package block installs NGINX. The service block ensures that
NGINX is started and enabled at boot, then declares to the rest of
Chef what the nginx service will support as far as actions. The tem
plate block templates an ERB file and places it at /etc/nginx.conf
with an owner and group of root. The template block also sets the
mode to 644 and notifies the nginx service to reload, but waits until
the end of the Chef run declared by the :delayed statement. The
templated configuration file is not included. However, it can be as
simple as a default NGINX configuration file or very complex with
ERB templating language loops and variable substitution.

Discussion

Chef is a configuration management tool based in Ruby. Chef can be
run in a master-slave, or solo configuration, now known as Chef
Zero. Chef has a very large community with many public cookbooks
called the Supermarket. Public cookbooks from the Supermarket
can be installed and maintained via a command-line utility called
Berkshelf. Chef is extremely capable, and what we have demon-
strated is just a small sample. The public NGINX cookbook in the
Supermarket is extremely flexible and provides the options to easily
install NGINX from a package manager or from source, and the
ability to compile and install many different modules as well as tem-
plate out the basic configurations.

Also See

Chef documentation

Chef Package

Chef Service

Chef Template

Chef Supermarket for NGINX

5.5 Installing with Ansible

Problem

You need to install and configure NGINX with Ansible to manage
NGINX configurations as code and conform with the rest of your
Ansible configurations.

54 | Chapter 5: Programmability and Automation

Solution

Create an Ansible playbook to install NGINX and manage the
nginx.conf file. The following is an example task file for the playbook
to install NGINX. Ensure its running and template the configura-
tion file:

- name: NGINX | Installing NGINX
package: name=nginx state=present

- name: NGINX | Starting NGINX
service:
name: nginx
state: started
enabled: yes

- name: Copy nginx configuration in place.
template:
src: nginx.conf.j2
dest: "/etc/nginx/nginx.conf"
owner: root
group: root
mode: 0644
notify:
- reload nginx

The package block installs NGINX. The service block ensures that
NGINX is started and enabled at boot. The template block tem-
plates a Jinja2 file and places the result at /etc/nginx.conf with an
owner and group of root. The template block also sets
the mode to 644 and notifies the nginx service to reload. The tem-
plated configuration file is not included. However, it can be as sim-
ple as a default NGINX configuration file or very complex with
Jinja2 templating language loops and variable substitution.

Discussion

Ansible is a widely used and powerful configuration management
tool based in Python. The configuration of tasks is in YAML, and
you use the Jinja2 templating language for file templating. Ansible
offers a master named Ansible Tower on a subscription model.
However, its commonly used from local machines or to build
servers directly to the client or in a masterless model. Ansible bulk
SSHes into its servers and runs the configurations. Much like other
configuration management tools, there’s a large community of pub-

5.5 Installing with Ansible | 55

lic roles. Ansible calls this the Ansible Galaxy. You can find very
sophisticated roles to utilize in your playbooks.

Also See

Ansible Documentation
Ansible Packages
Ansible Service

Ansible Template
Ansible Galaxy

5.6 Installing with SaltStack

Problem

You need to install and configure NGINX with SaltStack to manage
NGINX configurations as code and conform with the rest of your
SaltStack configurations.

Solution

Install NGINX through the package management module and man-
age the configuration files you desire. The following is an example
state file (sls) that will install the nginx package and ensure the ser-
vice is running, enabled at boot, and reload if a change is made to
the configuration file:

nginx:

pkg:
- installed

service:
- name: nginx
- running
- enable: True
- reload: True
- watch:

- file: /etc/nginx/nginx.conf

/etc/nginx/nginx.conf:

file:
- managed

- source: salt://path/to/nginx.conf

- user: root

- group: root

- template: jinja

- mode: 644

56 | Chapter 5: Programmability and Automation

- require:
- pkg: nginx

This is a basic example of installing NGINX via a package manage-
ment utility and managing the nginx.conf file. The NGINX package
is installed and the service is running and enabled at boot. With
SaltStack you can declare a file managed by Salt as seen in the exam-
ple and templated by many different templating languages. The tem-
plated configuration file is not included. However, it can be as
simple as a default NGINX configuration file or very complex with
the Jinja2 templating language loops and variable substitution. This
configuration also specifies that NGINX must be installed prior to
managing the file because of the require statement. After the file is
in place, NGINX is reloaded because of the watch directive on the
service and reloads as opposed to restarts because the reload direc-
tive is set to True.

Discussion

SaltStack is a powerful configuration management tool that defines
server states in YAML. Modules for SaltStack can be written in
Python. Salt exposes the Jinja2 templating language for states as well
as for files. However, for files there are many other options, such as
Mako, Python itself, and others. Salt works in a master-slave config-
uration as well as a masterless configuration. Slaves are called min-
ions. The master-slave transport communication, however, differs
from others and sets SaltStack apart. With Salt you're able to choose
ZeroMQ, TCP, or Reliable Asynchronous Event Transport (RAET)
for transmissions to the Salt agent; or you can not use an agent, and
the master can SSH instead. Because the transport layer is by default
asynchronous, SaltStack is built to be able to deliver its message to a
large number of minions with low load to the master server.

Also See

SaltStack

Installed Packages
Managed Files
Templating with Jinja

5.6 Installing with SaltStack | 57

5.7 Automating Configurations with Consul
Templating

Problem

You need to automate your NGINX configuration to respond to
changes in your environment through use of Consul.

Solution

Use the consul-template daemon and a template file to template
out the NGINX configuration file of your choice:

upstream backend { {{range service "app.backend"}}
server {{.Address}};{{end}}
}
This example is a Consul Template file that templates an upstream
configuration block. This template will loop through nodes in Con-
sul identified as app.backend. For every node in Consul, the tem-
plate will produce a server directive with that node’s IP address.

The consul-template daemon is run via the command line and can
be used to reload NGINX every time the configuration file is tem-
plated with a change:

consul-template -consul consul.example.internal -template \
template:/etc/nginx/conf.d/upstream.conf:"nginx -s reload"

This command instructs the consul-template daemon to connect
to a Consul cluster at consul.example.internal and to use a file
named template in the current working directory to template the file
and output the generated contents to /etc/nginx/conf.d/
upstream.conf, then to reload NGINX every time the templated file
changes. The -template flag takes a string of the template file, the
output location, and the command to run after the templating pro-
cess takes place; these three variables are separated by a colon. If the
command being run has spaces, make sure to wrap it in double
quotes. The -consul flag tells the daemon what Consul cluster to
connect to.

Discussion

Consul is a powerful service discovery tool and configuration store.
Consul stores information about nodes as well as key-value pairs in

58 | Chapter 5: Programmability and Automation

a directory-like structure and allows for restful API interaction.
Consul also provides a DNS interface on each client, allowing for
domain name lookups of nodes connected to the cluster. A separate
project that utilizes Consul clusters is the consul-template dae-
mon; this tool templates files in response to changes in Consul
nodes, services, or key-value pairs. This makes Consul a very power-
ful choice for automating NGINX. With consul-template you can
also instruct the daemon to run a command after a change to the
template takes place. With this, we can reload the NGINX configu-
ration and allow your NGINX configuration to come alive along
with your environment. With Consul youre able to set up health
checks on each client to check the health of the intended service.
With this failure detection, youre able to template your NGINX
configuration accordingly to only send traffic to healthy hosts.

Also See

Consul Home Page
Introduction to Consul Template
Consul Template GitHub

5.7 Automating Configurations with Consul Templating | 59

CHAPTER 6
Authentication

6.0 Introduction

NGINX is able to authenticate clients. Authenticating client requests
with NGINX offloads work and provides the ability to stop unau-
thenticated requests from reaching your application servers. Mod-
ules available for NGINX Open Source include basic authentication
and authentication subrequests. The NGINX Plus exclusive module
for verfying JSON Web Tokens (JWTs) enables integration with
third-party authentication providers that use the authentication
standard OpenID Connect.

6.1 HTTP Basic Authentication

Problem

You need to secure your application or content via HTTP basic
authentication.

Solution

Generate a file in the following format, where the password is
encrypted or hashed with one of the allowed formats:

comment
namel:passwordil
name2:password2:comment
name3:password3

61

The username is the first field, the password the second field, and
the delimiter is a colon. There is an optional third field, which you
can use to comment on each user. NGINX can understand a few dif-
ferent formats for passwords, one of which is whether the password
is encrypted with the C function crypt(). This function is exposed
to the command line by the openssl passwd command. With
openssl installed, you can create encrypted password strings by
using the following command:

$ openssl passwd MyPassword1234

The output will be a string that NGINX can use in your password
file.

Use the auth_basic and auth_basic_user_file directives within
your NGINX configuration to enable basic authentication:

location / {
auth_basic "Private site";
auth_basic_user_file conf.d/passwd;

}

You can use the auth_basic directives in the HTTP, server, or loca-
tion contexts. The auth_basic directive takes a string parameter,
which is displayed on the basic authentication pop-up window when
an unauthenticated user arrives. The auth_basic_user_file speci-
fies a path to the user file.

Discussion

You can generate basic authentication passwords a few ways and in a
few different formats with varying degrees of security. The htpasswd
command from Apache can also generate passwords. Both the
openssl and htpasswd commands can generate passwords with the
apr1 algorithm, which NGINX can also understand. The password
can also be in the salted SHA-1 format that Lightweight Directory
Access Protocol (LDAP) and Dovecot use. NGINX supports more
formats and hashing algorithms; however, many of them are consid-
ered insecure because they can easily be defeated by brute-force
attacks.

You can use basic authentication to protect the context of the entire
NGINX host, specific virtual servers, or even just specific location
blocks. Basic authentication won’t replace user authentication for
web applications, but it can help keep private information secure.

62 | Chapter6: Authentication

Under the hood, basic authentication is done by the server returning
a 401 unauthorized HTTP code with the response header WWW-
Authenticate. This header will have a value of Basic realm="your
string". This response causes the browser to prompt for a user-
name and password. The username and password are concatenated
and delimited with a colon, then base64-encoded, and then sent in a
request header named Authorization. The Authorization request
header will specify a Basic and user:password encoded string. The
server decodes the header and verifies against the provided
auth_basic_user_file. Because the username password string is
merely base64-encoded, it's recommended to use HTTPS with basic
authentication.

6.2 Authentication Subrequests

Problem

You have a third-party authentication system for which you would
like requests authenticated.

Solution

Use the http_auth_request_module to make a request to the
authentication service to verify identity before serving the request:

location /private/ {
auth_request /auth;
auth_request_set $auth_status Supstream_status;

}

location = /auth {
internal;
proxy_pass http://auth-server;
proxy_pass_request_body off;
proxy_set_header Content-Length "";
proxy_set_header X-0riginal-URI $request_uri;

}

The auth_request directive takes a URI parameter that must be a
local internal location. The auth_request_set directive allows you
to set variables from the authentication subrequest.

6.2 Authentication Subrequests | 63

Discussion

The http_auth_request_module enables authentication on every
request handled by the NGINX server. The module makes a subre-
quest before serving the original to determine if the request has
access to the resource it's requesting. The entire original request is
proxied to this subrequest location. The authentication location acts
as a typical proxy to the subrequest and sends the original request,
including the original request body and headers. The HTTP status
code of the subrequest is what determines whether or not access is
granted. If the subrequest returns with an HTTP 200 status code,
the authentication is successful and the request is fulfilled. If the
subrequest returns HT'TP 401 or 403, the same will be returned for
the original request.

If your authentication service does not request the request body, you
can drop the request body with the proxy_pass_request_body
directive, as demonstrated. This practice will reduce the request size
and time. Because the response body is discarded, the Content-
Length header must be set to an empty string. If your authentication
service needs to know the URI being accessed by the request, you’ll
want to put that value in a custom header that your authentication
service checks and verifies. If there are things you do want to keep
from the subrequest to the authentication service, like response
headers or other information, you can use the auth_request_set
directive to make new variables out of response data.

6.3 Validating JWTs

Problem

You need to validate a JWT before the request is handled with
NGINX Plus.

Solution

Use NGINX Plus’s HT'TP JWT authentication module to validate the
token signature and embed JWT claims and headers as NGINX
variables:

location /api/ {
auth_jwt "api";

64 | Chapter6: Authentication

auth_jwt_key_file conf/keys.json;
}

This configuration enables validation of JWTs for this location. The
auth_jwt directive is passed a string, which is used as the authenti-
cation realm. The auth_jwt takes an optional token parameter of a
variable that holds the JWT. By default, the Authentication header
is used per the JWT standard. The auth_jwt directive can also be
used to cancel the effects of required JWT authentication from
inherited configurations. To turn off authentication, pass the key-
word to the auth_jwt directive with nothing else. To cancel inher-
ited authentication requirements, pass the off keyword to the
auth_jwt directive with nothing else. The auth_jwt_key_file takes
a single parameter. This parameter is the path to the key file in stan-
dard JSON Web Key format.

Discussion

NGINX Plus is able to validate the JSON web signature types of
tokens as opposed to the JSON web encryption type, where the
entire token is encrypted. NGINX Plus is able to validate signatures
that are signed with the HS256, RS256, and ES256 algorithms. Hav-
ing NGINX Plus validate the token can save the time and resources
needed to make a subrequest to an authentication service. NGINX
Plus deciphers the JWT header and payload, and captures the stan-
dard headers and claims into embedded variables for your use.

Also See

RFC Standard Documentation of JSON Web Signature
RFC Standard Documentation of JSON Web Algorithms
RFC Standard Documentation of JSON Web Token
NGINX Embedded Variables

Detailed NGINX Blog

6.4 Creating JSON Web Keys

Problem
You need a JSON Web Key for NGINX Plus to use.

6.4 (reating JSON Web Keys | 65

Solution

NGINX Plus utilizes the JSON Web Key (JWK) format as specified
in the RFC standard. This standard allows for an array of key objects
within the JWK file.

The following is an example of what the key file may look like:

{"keys":
[

{
"kty":"oct",
"kid":"0001",
"k":"OctetSequenceKeyValue"

1,

{
"kty":"EC",
"kid":"0002"
"crv":"P-256",
"x": "XCoordinateValue",
"y": "YCoordinateValue",
"d": "PrivateExponent",
"use": "sig"

1,

{
"kty":"RSA",
"kid":"0003"
"n": "Modulus",
"e": "Exponent",
"d": "PrivateExponent"

}

1
}

The JWK file shown demonstrates the three initial types of keys
noted in the RFC standard. The format of these keys is also part of
the RFC standard. The kty attribute is the key type. This file shows
three key types: the Octet Sequence (oct), the EllipticCurve (EC),
and the RSA type. The kid attribute is the key ID. Other attributes to
these keys are specified in the standard for that type of key. Look to
the RFC documentation of these standards for more information.

Discussion

There are numerous libraries available in many different languages
to generate the JSON Web Key. It's recommended to create a key ser-
vice that is the central JWK authority to create and rotate your
JWKs at a regular interval. For enhanced security, it's recommended

66 | Chapter6: Authentication

to make your JWKs as secure as your SSL/TLS certifications. Secure
your key file with proper user and group permissions. Keeping them
in memory on your host is best practice. You can do so by creating
an in-memory filesystem like ramfs. Rotating keys on a regular
interval is also important; you may opt to create a key service that
creates public and private keys and offers them to the application
and NGINX via an APL

Also See
RFC standardization documentation of JSON Web Key

6.5 Authenticate Users via Existing OpenID
Connect 5SSO

Problem

You want to offload OpenID Connect authentication validation to
NGINX Plus.

Solution

Use the JWT module that comes with NGINX Plus to secure a loca-
tion or server, and instruct the auth_jwt directive to use
Scookie_auth_token as the token to be validated:

location /private/ {
auth_jwt "Google Oauth" token=$cookie_auth_token;
auth_jwt_key_file /etc/nginx/google_certs. jwk;
}
This configuration directs NGINX Plus to secure the /private/ URI
path with JWT validation. Google OAuth 2.0 OpenID Connect uses
the cookie auth_token rather than the default bearer token. Thus,
you must instruct NGINX to look for the token in this cookie rather
than in the NGINX Plus default location. The auth_jwt_key file
location is set to an arbitrary path, which is a step that we cover in
Recipe 6.6.

Discussion

This configuration demonstrates how you can validate a Google
OAuth 2.0 OpenID Connect JSON Web Token with NGINX Plus.
The NGINX Plus JWT authentication module for HTTP is able to

6.5 Authenticate Users via Existing OpenID Connect SSO | 67

validate any JSON Web Token that adheres to the RFC for JSON
Web Signature specification, instantly enabling any SSO authority
that utilizes JSON Web Tokens to be validated at the NGINX Plus
layer. The OpenID 1.0 protocol is a layer on top of the OAuth 2.0
authentication protocol that adds identity, enabling the use of JWTs
to prove the identity of the user sending the request. With the signa-
ture of the token, NGINX Plus can validate that the token has not
been modified since it was signed. In this way, Google is using an
asynchronous signing method and makes it possible to distribute
public JWKs while keeping its private JWK secret.

NGINX Plus can also control the Authorization Code Flow for
OpenID Connect 1.0, enabling NGINX Plus as a Relay Party for
OpenID Connect. This capability enables integration with most
major identity providers, including CA Single Sign On (formerly
SiteMinder), ForgeRock OpenAM, Keycloak, Okta, OneLogin, and
Ping Identity. For more information and a reference implementation
of NGINX Plus as a relaying party for OpenID Connect authentica-
tion, check out the NGINX Inc OpenID Connect GitHub Reposi-
tory.

Also See

Detailed NGINX Blog on OpenID Connect
OpenlD Connect

6.6 Obtaining the JSON Web Key from Google

Problem

You need to obtain the JSON Web Key from Google to use when
validating OpenID Connect tokens with NGINX Plus.

Solution

Utilize Cron to request a fresh set of keys every hour to ensure your
keys are always up-to-date:

0 * * * * root wget https://www.googleapis.com/oauth2/v3/ \
certs-0 /etc/nginx/google_certs. jwk

This code snippet is a line from a crontab file. Unix-like systems
have many options for where crontab files can live. Every user will

68 | Chapter6: Authentication

have a user-specific crontab, and there’s also a number of files and
directories in the /etc/ directory.

Discussion

Cron is a common way to run a scheduled task on a Unix-like sys-
tem. JSON Web Keys should be rotated on a regular basis to ensure
the security of the key, and in turn, the security of your system. To
ensure that you always have the most up-to-date key from Google,
you’ll want to check for new JWKs at regular intervals. This Cron
solution is one way of doing so.

Also See

Cron

6.6 Obtaining the JSON Web Key from Google | 69

CHAPTER7
Security Controls

7.0 Introduction

Security is done in layers, and there must be multiple layers to your
security model for it to be truly hardened. In this chapter, we go
through many different ways to secure your web applications with
NGINX and NGINX Plus. You can use many of these security meth-
ods in conjunction with one another to help harden security. The
following are a number of security sections that explore features of
NGINX and NGINX Plus that can assist in strengthening your
application. You might notice that this chapter does not touch upon
one of the largest security features of NGINX, the ModSecurity 3.0
NGINX module, which turns NGINX into a Web Application Fire-
wall (WAF). To learn more about the WAF capabilities, download
the ModSecurity 3.0 and NGINX: Quick Start Guide.

7.1 Access Based on IP Address

Problem

You need to control access based on the IP address of the client.

Solution

Use the HTTP access module to control access to protected
resources:

location /admin/ {
deny 10.0.0.1;

n

allow 10.0.0.0/20;

allow 2001:0db8::/32;

deny all;

}

The given location block allows access from any IPv4 address in
10.0.0.0/20 except 10.0.0.1, allows access from IPv6 addresses in the
2001:0db8: : /32 subnet, and returns a 403 for requests originating
from any other address. The allow and deny directives are valid
within the HTTP, server, and location contexts. Rules are checked in
sequence until a match is found for the remote address.

Discussion

Protecting valuable resources and services on the internet must be
done in layers. NGINX provides the ability to be one of those layers.
The deny directive blocks access to a given context, while the allow
directive can be used to allow subsets of the blocked access. You can
use IP addresses, IPv4 or IPv6, CIDR block ranges, the keyword all,
and a Unix socket. Typically when protecting a resource, one might
allow a block of internal IP addresses and deny access from all.

7.2 Allowing Cross-Origin Resource Sharing

Problem

You're serving resources from another domain and need to allow
cross-origin resource sharing (CORS) to enable browsers to utilize
these resources.

Solution
Alter headers based on the request method to enable CORS:

map S$request_method S$Scors_method {
OPTIONS 11;
GET 1;
POST 1;
default 0;
}

server {

location / {
if (Scors_method ~ '1') {
add_header 'Access-Control-Allow-Methods'
'GET,POST,OPTIONS';

72 | Chapter 7: Security Controls

add_header 'Access-Control-Allow-Origin'
'* example.com';

add_header 'Access-Control-Allow-Headers
'DNT,
Keep-Alive,
User-Agent,
X-Requested-With,
If-Modified-Since,
Cache-Control,
Content-Type';

}

if (Scors_method = '11') {
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain; charset=UTF-8';
add_header 'Content-Length' 0;
return 204;

}
}

}
There’s a lot going on in this example, which has been condensed by
using a map to group the GET and POST methods together. The
OPTIONS request method returns a preflight request to the client
about this server’s CORS rules. OPTIONS, GET, and POST methods are
allowed under CORS. Setting the Access-Control-Allow-Origin
header allows for content being served from this server to also be
used on pages of origins that match this header. The preflight
request can be cached on the client for 1,728,000 seconds, or 20
days.

Discussion

Resources such as JavaScript make CORS when the resource they’re
requesting is of a domain other than its own. When a request is
considered cross origin, the browser is required to obey CORS rules.
The browser will not use the resource if it does not have headers that
specifically allow its use. To allow our resources to be used by other
subdomains, we have to set the CORS headers, which can be done
with the add_header directive. If the request is a GET, HEAD, or POST
with standard content type, and the request does not have special
headers, the browser will make the request and only check for ori-
gin. Other request methods will cause the browser to make the pre-
flight request to check the terms of the server to which it will obey
for that resource. If you do not set these headers appropriately, the
browser will give an error when trying to utilize that resource.

7.2 Allowing Cross-Origin Resource Sharing | 73

7.3 Client-Side Encryption

Problem

You need to encrypt traffic between your NGINX server and the
client.

Solution

Utilize one of the SSL modules, such as the ngx_http_ss1_module
or ngx_stream_ss1_module to encrypt traffic:

http { # ALl directives used below are also valid in stream
server {
listen 8433 ssl;
ssl_protocols TLSv1.2 TLSv1.3;
ssl_ciphers HIGH:!aNULL: !MD5;
ssl_certificate /etc/nginx/ssl/example.pem;
ssl_certificate_key /etc/nginx/ssl/example.key;
ssl_certificate /etc/nginx/ssl/example.ecdsa.crt;
ssl_certificate_key /etc/nginx/ssl/example.ecdsa.key;
ssl_session_cache shared:SSL:10m;
ssl_session_timeout 10m;
}
}

This configuration sets up a server to listen on a port encrypted with
SSL, 8443. The server accepts the SSL protocol versions TLSv1.2 and
TLSv1.3. Two sets of certificate and key pair locations are disclosed
to the server for use. The server is instructed to use the highest
strength offered by the client while restricting a few that are inse-
cure. The Elliptic Curve Cryptopgraphy (ECC) ciphers are priori-
tized as we've provided an ECC certificate key pair. The SSL session
cache and timeout allow workers to cache and store session parame-
ters for a given amount of time. There are many other session cache
options that can help with performance or security of all types of use
cases. You can use session cache options in conjunction with one
another. However, specifying one without the default will turn off
that default, built-in session cache.

Discussion

Secure transport layers are the most common way of encrypting
information in transit. As of this writing, the TLS protocol is prefer-
red over the SSL protocol. That’s because versions 1 through 3 of

74 | Chapter 7: Security Controls

SSL are now considered insecure. Although the protocol name
might be different, TLS still establishes a secure socket layer. NGINX
enables your service to protect information between you and your
clients, which in turn protects the client and your business. When
using a signed certificate, you need to concatenate the certificate
with the certificate authority chain. When you concatenate your cer-
tificate and the chain, your certificate should be above the chain in
the file. If your certificate authority has provided many files in the
chain, it can also provide the order in which they are layered. The
SSL session cache enhances performance by not having to negotiate
for SSL/TLS versions and ciphers.

In testing, ECC certificates were found to be faster than the
equivalent-strength RSA certificates. The key size is smaller, which
results in the ability to serve more SSL/TLS connections, and with
faster handshakes. NGINX allows you to configure multiple certifi-
cates and keys, and then serve the optimal certificate for the client
browser. This allows you to take advantage of the newer technology
but still serve older clients.

Also See

Mozilla Server Side TLS Page
Mozilla SSL Configuration Generator
Test Your SSL Configuration with SSL Labs SSL Test

7.4 Upstream Encryption

Problem

You need to encrypt traffic between NGINX and the upstream ser-
vice and set specific negotiation rules for compliance regulations or
if the upstream is outside of your secured network.

Solution

Use the SSL directives of the HTTP proxy module to specify SSL
rules:

location / {
proxy_pass https://upstream.example.com;
proxy_ssl_verify on;
proxy_ssl_verify_depth 2;

7.4 Upstream Encryption | 75

proxy_ssl_protocols TLSv1.2;
}
These proxy directives set specific SSL rules for NGINX to obey. The
configured directives ensure that NGINX verifies that the certificate
and chain on the upstream service is valid up to two certificates
deep. The proxy_ssl_protocols directive specifies that NGINX will
only use TLS version 1.2. By default, NGINX does not verify
upstream certificates and accepts all TLS versions.

Discussion

The configuration directives for the HTTP proxy module are vast,
and if you need to encrypt upstream traffic, you should at least turn
on verification. You can proxy over HTTPS simply by changing the
protocol on the value passed to the proxy_pass directive. However,
this does not validate the upstream certificate. Other directives, such
as proxy_ssl_certificate and proxy_ssl_certificate_key,
allow you to lock down upstream encryption for enhanced security.
You can also specify proxy_ssl_crl or a certificate revocation list,
which lists certificates that are no longer considered valid. These SSL
proxy directives help harden your system’s communication channels
within your own network or across the public internet.

7.5 Securing a Location

Problem

You need to secure a location block using a secret.

Solution

Use the secure link module and the secure_link_secret directive
to restrict access to resources to users who have a secure link:

location /resources {
secure_link_secret mySecret;
if ($secure_link = "") { return 403; }

rewrite A /secured/S$Ssecure_link;

}

location /secured/ {
internal;

76 | Chapter 7: Security Controls

root /var/www;
}

This configuration creates an internal and public-facing location
block. The public-facing location block /resources will return a 403
Forbidden unless the request URI includes an md5 hash string that
can be verified with the secret provided to the secure_link_secret
directive. The $secure_link variable is an empty string unless the
hash in the URI is verified.

Discussion

Securing resources with a secret is a great way to ensure your files
are protected. The secret is used in conjunction with the URI. This
string is then md5 hashed, and the hex digest of that md5 hash is used
in the URI. The hash is placed into the link and evaluated by
NGINX. NGINX knows the path to the file being requested as it’s in
the URI after the hash. NGINX also knows your secret as it’s pro-
vided via the secure_link_secret directive. NGINX is able to
quickly validate the md5 hash and store the URI in the $secure_link
variable. If the hash cannot be validated, the variable is set to an
empty string. It's important to note that the argument passed to the
secure_link_secret must be a static string; it cannot be a variable.

7.6 Generating a Secure Link with a Secret

Problem

You need to generate a secure link from your application using a
secret.

Solution

The secure link module in NGINX accepts the hex digest of an md5
hashed string, where the string is a concatenation of the URI path
and the secret. Building on the last section, Recipe 7.5, we will create
the secured link that will work with the previous configuration
example given that theres a file present at /var/www/secured/
index.html. To generate the hex digest of the md5 hash, we can use
the Unix openss1 command:

$ echo -n 'index.htmlmySecret' | openssl md5 -hex
(stdin)= a53bee08a4bfObbea978ddf736363a12

7.6 Generating a Secure Link with a Secret | 77

Here we show the URI that we're protecting, index.html, concaten-
ated with our secret, mySecret. This string is passed to the openssl
command to output an md5 hex digest.

The following is an example of the same hash digest being construc-
ted in Python using the hashlib library that is included in the
Python Standard Library:
import
hashlib.md5.(b'index.htmlmySecret').hexdigest()
'a53bee08a4bfObbead78ddf736363a12"
Now that we have this hash digest, we can use it in a URL. Our
example will be www.example.com making a request for the

file /var/www/secured/index.html through our /resources location.
Our full URL will be the following:

www.example.com/resources/a53bee08a4bfObbead78ddf736363a12/\
index.html

Discussion

Generating the digest can be done in many ways, in many languages.
Things to remember: the URI path goes before the secret, there are
no carriage returns in the string, and use the hex digest of the md5
hash.

7.7 Securing a Location with an Expire Date

Problem

You need to secure a location with a link that expires at some future
time and is specific to a client.

Solution

Utilize the other directives included in the secure link module to set
an expire time and use variables in your secure link:

location /resources {
root /var/www;
secure_link $arg_md5,%arg_expires;
secure_link_md5 "$secure_link_expires$uriSremote_addr
mySecret";
if ($secure_link
if ($Ssecure_link

""y { return 403; }
"0") { return 410; }

78 | Chapter 7: Security Controls

The secure_link directive takes two parameters separated with a
comma. The first parameter is the variable that holds the md5 hash.
This example uses an HTTP argument of md5. The second parame-
ter is a variable that holds the time in which the link expires in Unix
epoch time format. The secure_link_md5 directive takes a single
parameter that declares the format of the string that is used to con-
struct the md5 hash. Like the other configuration, if the hash does
not validate, the $secure_link variable is set to an empty string.
However, with this usage, if the hash matches but the time has
expired, the $secure_link variable will be set to 0.

Discussion

This usage of securing a link is more flexible and looks cleaner than
the secure_link_secret shown in Recipe 7.5. With these directives,
you can use any number of variables that are available to NGINX in
the hashed string. Using user-specific variables in the hash string
will strengthen your security as users won't be able to trade links to
secured resources. Its recommended to use a variable like
Sremote_addr or $http_x_forwarded_for, or a session cookie
header generated by the application. The arguments to secure_link
can come from any variable you prefer, and they can be named
whatever best fits. The conditions around what the $secure_link
variable is set to returns known HTTP codes for Forbidden and
Gone. The HTTP 410, Gone, works great for expired links as the
condition is to be considered permanent.

7.8 Generating an Expiring Link

Problem

You need to generate a link that expires.

Solution

Generate a timestamp for the expire time in the Unix epoch format.
On a Unix system, you can test by using the date as demonstrated in
the following:

$ date -d "2020-12-31 00:00" +%s --utc
1609372800

7.8 Generating an Expiring Link | 79

Next, you'll need to concatenate your hash string to match the string
configured with the secure_link_md5 directive. In this case, our
string to be used will be 1293771600/resources/
index.htm1127.0.0.1 mySecret. The md5 hash is a bit different
than just a hex digest. It's an md5 hash in binary format, base64-
encoded, with plus signs (+) translated to hyphens (-), slashes (/)
translated to underscores (_), and equal (=) signs removed. The fol-
lowing is an example on a Unix system:

$ echo -n '1609372800/resources/index.html127.0.0.1 mySecret' \
| openssl md5 -binary \
| openssl base64 \
| tr +/ -_\
| tr -d =
TG6ck30pAttQ1d7iW3I0cw
Now that we have our hash, we can use it as an argument along with
the expire date:

/resources/index.htm1?md5=TG6ck30pAttQ1d7jW3]0cw&expires=1609372
800"

The following is a more practical example in Python utilizing a rela-
tive time for the expiration, setting the link to expire one hour from
generation. At the time of writing this example works with Python
2.7 and 3.x utilizing the Python Standard Library:

from import datetime, timedelta
from import b64encode
import

Set environment vars

resource = b'/resources/index.html’
remote_addr = b'127.0.0.1'

host = b'www.example.com'

mysecret = b'mySecret'

Generate expire timestamp

now = datetime.utcnow()

expire_dt = now + timedelta(hours=1)

expire_epoch = str.encode(expire_dt.strftime('%s'))

md5 hash the string
uncoded = expire_epoch + resource + remote_addr + mysecret
md5hashed = hashlib.md5(uncoded).digest()

Base64 encode and transform the string

b64 = bé64encode(md5hashed)

unpadded_b64url = b64.replace(b'+', b'-")\
.replace(b'/", b'_")\

80 | Chapter 7: Security Controls

.replace(b'=", b'")

Format and generate the link
linkformat = "{}{}?md5={}?expires={}"
securelink = linkformat.format(
host.decode(),
resource.decode(),
unpadded_bé64url.decode(),
expire_epoch.decode()

)

print(securelink)

Discussion

With this pattern we're able to generate a secure link in a special for-
mat that can be used in URLs. The secret provides security through
use of a variable that is never sent to the client. Youre able to use as
many other variables as you need to in order to secure the location.
md5 hashing and base64 encoding are common, lightweight, and
available in nearly every language.

7.9 HTTPS Redirects

Problem
You need to redirect unencrypted requests to HTTPS.

Solution
Use a rewrite to send all HTTP traffic to HTTPS:

server {
listen 80 default_server;
listen [::]:80 default_server;
server_name _;
return 301 https://ShostSrequest_uri;
}

This configuration listens on port 80 as the default server for both
IPv4 and IPv6 and for any hostname. The return statement returns
a 301 permanent redirect to the HTTPS server at the same host and
request URL

Discussion

It's important to always redirect to HT'TPS where appropriate. You
may find that you do not need to redirect all requests but only those

7.9 HTTPS Redirects | 81

with sensitive information being passed between client and server.
In that case, you may want to put the return statement in particular
locations only, such as /login.

7.10 Redirecting to HTTPS where SSL/TLS Is
Terminated Before NGINX

Problem

You need to redirect to HTTPS, however, youve terminated
SSL/TLS at a layer before NGINX.

Solution

Use the standard X-Forwarded-Proto header to determine if you
need to redirect:

server {
listen 80 default_server;
listen [::]:80 default_server;
server_name _;
if (Shttp_x_forwarded_proto = 'http') {
return 301 https://ShostSrequest_uri;
}
}
This configuration is very much like HTTPS redirects. However, in
this configuration we’re only redirecting if the header X-Forwarded-

Proto is equal to HTTP.

Discussion

It's a common use case that you may terminate SSL/TLS in a layer in
front of NGINX. One reason you may do something like this is to
save on compute costs. However, you need to make sure that every
request is HTTPS, but the layer terminating SSL/TLS does not have
the ability to redirect. It can, however, set proxy headers. This con-
figuration works with layers such as the Amazon Web Services Elas-
tic Load Balancer, which will offload SSL/TLS at no additional
cost. This is a handy trick to make sure that your HTTP traffic is
secured.

82 | Chapter 7: Security Controls

7.11 HTTP Strict Transport Security

Problem

You need to instruct browsers to never send requests over HTTP.

Solution

Use the HTTP Strict Transport Security (HSTS) enhancement by
setting the Strict-Transport-Security header:

add_header Strict-Transport-Security max-age=31536000;

This configuration sets the Strict-Transport-Security header to a
max age of a year. This will instruct the browser to always do an
internal redirect when HT TP requests are attempted to this domain,
so that all requests will be made over HTTPS.

Discussion

For some applications a single HTTP request trapped by a man in
the middle attack could be the end of the company. If a form post
containing sensitive information is sent over HTTP, the HTTPS
redirect from NGINX won't save you; the damage is done. This opt-
in security enhancement informs the browser to never make an
HTTP request, and therefore the request is never sent unencrypted.

Also See

RFC-6797 HTTP Strict Transport Security
OWASP HSTS Cheat Sheet

7.12 Satisfying Any Number of Security
Methods

Problem

You need to provide multiple ways to pass security to a closed site.

Solution

Use the satisfy directive to instruct NGINX that you want to sat-
isfy any or all of the security methods used:

7.11 HTTP Strict Transport Security | 83

location / {
satisfy any;

allow 192.168.1.0/24;
deny all;

auth_basic "closed site";
auth_basic_user_file conf/htpasswd;
}

This configuration tells NGINX that the user requesting the loca
tion / needs to satisfy one of the security methods: either the
request needs to originate from the 192.168.1.0/24 CIDR block or be
able to supply a username and password that can be found in the
conf/htpasswd file. The satisfy directive takes one of two options:
any or all.

Discussion

The satisfy directive is a great way to offer multiple ways to
authenticate to your web application. By specifying any to the sat
isfy directive, the user must meet one of the security challenges. By
specifying all to the satisfy directive, the user must meet all of the
security challenges. This directive can be used in conjunction with
the http_access_module detailed in Recipe 7.1, the
http_auth_basic_module detailed in Recipe 6.1, the
http_auth_request_module detailed in Recipe 6.2, and the
http_auth_jwt_module detailed in Recipe 6.3. Security is only truly
secure if it's done in multiple layers. The satisfy directive will help
you achieve this for locations and servers that require deep security
rules.

7.13 Dynamic DDoS$ Mitigation

Problem

You need a dynamic Distributed Denial of Service (DDoS) mitiga-
tion solution.

Solution

Use NGINX Plus to build a cluster-aware rate limit and automatic
blacklist:

84 | Chapter 7: Security Controls

limit_req_zone $remote_addr zone=per_1ip:1M rate=100r/s sync;
Cluster-aware rate limit
limit_req_status 429;

keyval_zone zone=sinbin:1M timeout=600 sync;
Cluster-aware "sin bin" with
10-minute TTL

keyval S$remote_addr $in_sinbin zone=sinbin;
Populate $in_sinbin with
matched client IP addresses

server {
listen 80;
location / {
if ($in_sinbin) {
set Slimit_rate 50; # Restrict bandwidth of bad clients
}

limit_req zone=per_ip;
Apply the rate limit here
error_page 429 = @send_to_sinbin;
Excessive clients are moved to
this location
proxy_pass http://my_backend;
}

location @send_to_sinbin {
rewrite ~ /api/3/http/keyvals/sinbin break;
Set the URI of the
"sin bin" key-val
proxy_method POST;
proxy_set_body '{"$remote_addr":"1"}';
proxy_pass http://127.0.0.1:80;
}

location /api/ {
api write=on;
directives to control access to the API

}

Discussion

This solution uses a synchronized rate limit and a synchronized key-
value store to dynamically respond to DDoS attacks and mitigate
their effects. The sync parameter provided to the limit_req_zone
and keyval_zone directives synchronizes the shared memory zone
with other machines in the active-active NGINX Plus cluster. This
example identifies clients that send more than 100 requests per sec-

7.13 Dynamic DDoS Mitigation | 85

ond, regardless of which NGINX Plus node receives the request.
When a client exceeds the rate limit, its IP address is added to a “sin
bin” key-value store by making a call to the NGINX Plus API. The
sin bin is synchronized across the cluster. Further requests from cli-
ents in the sin bin are subject to a very low bandwidth limit, regard-
less of which NGINX Plus node receives them. Limiting bandwidth
is preferable to rejecting requests outright because it does not clearly
signal to the client that DDoS mitigation is in effect. After 10
minutes the client is automatically removed from the sin bin.

86 | Chapter 7: Security Controls

CHAPTER 8
HTTP/2

8.0 Introduction

HTTP/2 is a major revision to the HTTP protocol. Much of the
work done in this version was focused on the transport layer, such as
enabling full request and response multiplexing over a single TCP
connection. Effiencies were gained through the use of compression
on HTTP header fields, and support for request prioritization was
added. Another large addition to the protocol was the ability for the
server to push messages to the client. This chapter details the basic
configuration for enabling HTTP/2 in NGINX as well as configur-
ing gRPC and HTTP/2 server push support.

8.1 Basic Configuration

Problem
You want to take advantage of HTTP/2.

Solution
Turn on HTTP/2 on your NGINX server:

server {
listen 443 ssl http2 default_server;

ssl_certificate server.crt;
ssl_certificate_key server.key;

87

}

Discussion

To turn on HTTP/2, you simply need to add the http2 parameter to
the listen directive. The catch, however, is that although the proto-
col does not require the connection to be wrapped in SSL/TLS, some
implementations of HTTP/2 clients support only HTTP/2 over an
encrypted connection. Another caveat is that the HTTP/2 specifica-
tion listed a number of TLS 1.2 cipher suites as blacklisted and
therefore will fail the handshake. The ciphers NGINX uses by
default are not on the blacklist. To test that your setup is correct you
can install a plugin for Chrome and Firefox browsers that indicates
when a site is using HTTP/2, or on the command line with the
nghttp utility.

Also See

HTTP/2 RFC Blacklisted Ciphers
Chrome HTTP2 and SPDY Indicator Plugin
Firefox HTTP2 Indicator Add-on

8.2 gRPC

Problem

You need to terminate, inspect, route, or load balance gRPC method
calls.

Solution
Use NGINX to proxy gRPC connections.

server {
listen 80 http2;

location / {
grpc_pass grpc://backend.local:50051;
}
}
In this configuration NGINX is listening on port 80 for unencrypted
HTTP/2 traffic, and proxying that traffic to a machine named back
end.local on port 50051. The grpc_pass directive instructs

88 | (Chapter8:HTTP/2

NGINX to treat the commuication as a gRPC call. The grpc:// in
front of our backend server location is not neccessary; however, it
does directly indicate that the backend communication is not
encrypted.

To utilize TLS encryption between the client and NGINX, and ter-
minate that encryption before passing the calls to the application
server, turn on SSL and HTTP/2, as you did in the first section:

server {
listen 443 ssl http2 default_server;

ssl_certificate server.crt;
ssl_certificate_key server.key;
location / {
grpc_pass grpc://backend.local:50051;
}
}
This configuration terminates TLS at NGINX and passes the gRPC
communication to the application over unencrypted HTTP/2.

To configure NGINX to encrypt the gRPC communication to the
application server, providing end-to-end encrypted traffic, simply
modify the grpc_pass directive to specify grpcs:// before the
server information (note the addition of the s denoting secure com-
munication):

grpc_pass grpcs://backend.local:50051;

You also can use NGINX to route calls to different backend services
based on the gRPC URI, which includes the package, service, and
method. To do so, utilize the location directive.

location /mypackage.servicel {
grpc_pass grpc://backend.local:50051;
}

location /mypackage.service2 {
grpc_pass grpc://backend.local:50052;

}

location / {
root /usr/share/nginx/html;
index index.html index.htm;

}
This configuration example uses the location directive to route
incoming HTTP/2 traffic between two separate gRPC services, as
well as a location to serve static content. Method calls for the
mypackage.servicel service are directed to the backend.local

8.2gRPC | 89

server on port 50051, and calls for mypackage.service2 are directed
to port 50052. The location / catches any other HTTP request and
serves static content. This demonstrates how NGINX is able to serve
gRPC and non-gRPC under the same HTTP/2 endpoint and route
accordingly.

Load balancing gRPC calls is also similar to non-gRPC HTTP traf-
fic:

upstream grpcservers {
server backendil.local:50051;
server backend2.local:50051;

}

server {
listen 443 ssl http2 default_server;
ssl_certificate server.crt;
ssl_certificate_key server.key;
location / {

grpc_pass grpc://grpcservers;

}

}

The upstream block works the exact same way for gRPC as it does
for other HTTP traffic. The only difference is that the upstreanm is
referenced by grpc_pass.

Discussion

NGINX is able to receive, proxy, load balance, route, and terminate
encryption for gRPC calls. The gRPC module enables NGINX to set,
alter, or drop gRPC call headers, set timeouts for requests, and set
upstream SSL/TLS specifications. As gRPC communicates over the
HTTP/2 protocol, you can configure NGINX to accept gRPC and
non-gRPC web traffic on the same endpoint.

8.3 HTTP/2 Server Push

Problem

You need to preemptively push content to the client.

Solution
Use the HTTP/2 server push feature of NGINX.

90 | Chapter8:HTTP/2

server {
listen 443 ssl http2 default_server;

ssl_certificate server.crt;
ssl_certificate_key server.key;
root /usr/share/nginx/html;

location = /demo.html {
http2_push /style.css;
http2_push /imagel.jpg;

}

Discussion

To use HTTP/2 server push, your server must be configured for
HTTP/2, as is done in Recipe 7.1. From there, you can instruct
NGINX to push specific files preemptively with the http2_push
directive. This directive takes one parameter, the full URI path of the
file to push to the client.

NGINX can also automatically push resources to clients if proxied
applications include an HTTP response header named Link. This
header is able to instruct NGINX to preload the resources specified.
To enable this feature, add http2_push_preload on; to the NGINX
configuration.

8.3 HTTP/2ServerPush | 91

CHAPTER9
Sophisticated Media Streaming

9.0 Introduction

This chapter covers streaming media with NGINX in MPEG-4 or
Flash Video formats. NGINX is widely used to distribute and stream
content to the masses. NGINX supports industry-standard formats
and streaming technologies, which will be covered in this chapter.
NGINX Plus enables the ability to fragment content on the fly with
the HTTP Live Stream module, as well as the ability to deliver
HTTP Dynamic Streaming of already fragmented media. NGINX
natively allows for bandwidth limits, and NGINX Plus’s advanced
features offers bitrate limiting, enabling your content to be delivered
in the most efficient manner while reserving the servers’ resources
to reach the most users.

9.1Serving MP4 and FLV

Problem

You need to stream digital media, originating in MPEG-4 (MP4) or
Flash Video (FLV).

Solution

Designate an HTTP location block as .mp4 or .flv. NGINX will
stream the media using progressive downloads or HTTP pseudos-
treaming and support seeking:

93

http {
server {

location /videos/ {

mp4;

}

location ~ \.flv$ {
flv;

}

}

The example location block tells NGINX that files in the videos
directory are in MP4 format type and can be streamed with progres-
sive download support. The second location block instructs NGINX
that any files ending in .flv are in FLV format and can be streamed
with HTTP pseudostreaming support.

Discussion

Streaming video or audio files in NGINX is as simple as a single
directive. Progressive download enables the client to initiate play-
back of the media before the file has finished downloading. NGINX
supports seeking to an undownloaded portion of the media in both
formats.

9.2 Streaming with HLS

Problem

You need to support HTTP Live Streaming (HLS) for H.264/AAC-
encoded content packaged in MP4 files.

Solution

Utilize NGINX Pluss HLS module with real-time segmentation,
packetization, and multiplexing, with control over fragmentation
buffering and more, like forwarding HLS arguments:

location /hls/ {
hls; # Use the HLS handler to manage requests

Serve content from the following location
alias /var/www/video;

94 | Chapter9: Sophisticated Media Streaming

HLS parameters

hls_fragment 4s;
hls_buffers 10 10m;
hls_mp4_buffer_size im;

hls_mp4_max_buffer_size 5m;
}
The location block demonstrated directs NGINX to stream HLS
media out of the /var/www/video directory, fragmenting the media
into four-second segments. The number of HLS buffers is set to 10
with a size of 10 megabytes. The initial MP4 buffer size is set to 1
MB with a maximum of 5 MB.

Discussion

The HLS module available in NGINX Plus provides the ability to
transmultiplex MP4 media files on the fly. There are many directives
that give you control over how your media is fragmented and buf-
fered. The location block must be configured to serve the media as
an HLS stream with the HLS handler. The HLS fragmentation is set
in number of seconds, instructing NGINX to fragment the media by
time length. The amount of buffered data is set with the
hls_buffers directive specifying the number of buffers and the
size. The client is allowed to start playback of the media after a cer-
tain amount of buffering has accrued specified by the
hls_mp4_buffer_size. However, a larger buffer may be necessary as
metadata about the video may exceed the initial buffer size. This
amount is capped by the hls_mp4_max_buffer_size. These buffer-
ing variables allow NGINX to optimize the end-user experience;
choosing the right values for these directives requires knowing the
target audience and your media. For instance, if the bulk of your
media is large video files, and your target audience has high band-
width, you may opt for a larger max buffer size and longer length
fragmentation. This will allow for the metadata about the content to
be downloaded initially without error and your users to receive
larger fragments.

9.2 Streaming withHLS | 95

9.3 Streaming with HDS

Problem

You need to support Adobe’s HTTP Dynamic Streaming (HDS) that
has already been fragmented and separated from the metadata.

Solution

Use NGINX Plus’s support for fragmented FLV files (F4F) module to
offer Adobe Adaptive Streaming to your users:
location /video/ {
alias /var/www/transformed_video;
faf;
faf_buffer_size 512k;
}
The example instructs NGINX Plus to serve previously fragmented
media from a location on disk to the client using the NGINX Plus
F4F module. The buffer size for the index file (.f4x) is set to 512 kilo-
bytes.

Discussion

The NGINX Plus F4F module enables NGINX to serve previously
fragmented media to end users. The configuration of such is as sim-
ple as using the f4f handler inside of an HTTP location block. The
faf_buffer_size directive configures the buffer size for the index
file of this type of media.

9.4 Bandwidth Limits

Problem

You need to limit bandwidth to downstream media streaming cli-
ents without impacting the viewing experience.

Solution

Utilize NGINX Plus’s bitrate-limiting support for MP4 media files:

96 | Chapter9: Sophisticated Media Streaming

location /video/ {

mp4;
mp4_limit_rate_after 15s;
mp4_limit_rate 1.2;

}

This configuration allows the downstream client to download for 15
seconds before applying a bitrate limit. After 15 seconds, the client is
allowed to download media at a rate of 120% of the bitrate, which
enables the client to always download faster than they play.

Discussion

NGINX Plus’s bitrate limiting allows your streaming server to limit
bandwidth dynamically based on the media being served, allowing
clients to download just as much as they need to ensure a seamless
user experience. The MP4 handler described in Recipe 9.1 designa-
tes this location block to stream MP4 media formats. The rate-
limiting directives, such as mp4_limit_rate_after, tell NGINX to
only rate-limit traffic after a specified amount of time, in seconds.
The other directive involved in MP4 rate limiting is
mp4_limit_rate, which specifies the bitrate at which clients are
allowed to download in relation to the bitrate of the media. A value
of 1 provided to the mp4_limit_rate directive specifies that NGINX
is to limit bandwidth (1-to-1) to the bitrate of the media. Providing
a value of more than one to the mp4_limit_rate directive will allow
users to download faster than they watch so they can buffer the
media and watch seamlessly while they download.

9.4 Bandwidth Limits | 97

CHAPTER 10
Cloud Deployments

10.0 Introduction

The advent of cloud providers has changed the landscape of web
application hosting. A process such as provisioning a new machine
used to take hours to months; now, you can create one with as little
as a click or API call. These cloud providers lease their virtual
machines, called Infrastructure as a Service (IaaS), or managed soft-
ware solutions such as databases, through a pay-per-usage model,
which means you pay only for what you use. This enables engineers
to build up entire environments for testing at a moment’s notice and
tear them down when they’re no longer needed. These cloud provid-
ers also enable applications to scale horizontally based on perfor-
mance need at a moment’s notice. This chapter covers basic NGINX
and NGINX Plus deployments on a couple of the major cloud pro-
vider platforms.

10.1 Auto-Provisioning on AWS

Problem

You need to automate the configuration of NGINX servers on Ama-
zon Web Services for machines to be able to automatically provision
themselves.

99

Solution

Utilize EC2 UserData as well as a prebaked Amazon Machine
Image. Create an Amazon Machine Image (AMI) with NGINX and
any supporting software packages installed. Utilize Amazon EC2
UserData to configure any environment-specific configurations at
runtime.

Discussion

There are three patterns of thought when provisioning on Amazon
Web Services:

Provision at boot
Start from a common Linux image, then run configuration
management or shell scripts at boot time to configure the
server. This pattern is slow to start and can be prone to errors.

Fully baked AMIs
Fully configure the server, then burn an AMI to use. This pat-
tern boots very fast and accurately. However, it’s less flexible to
the environment around it, and maintaining many images can
be complex.

Partially baked AMIs
Its a mix of both worlds. Partially baked is where software
requirements are installed and burned into an AMI, and envi-
ronment configuration is done at boot time. This pattern is flex-
ible compared to a fully baked pattern, and fast compared to a
provision-at-boot solution.

Whether you choose to partially or fully bake your AMIs, you'll
want to automate that process. To construct an AMI build pipeline,
it’s suggested to use a couple of tools:

Configuration management

Configuration management tools define the state of the server
in code, such as what version of NGINX is to be run and what
user it’s to run as, what DNS resolver to use, and who to proxy
upstream to. This configuration management code can be
source controlled and versioned like a software project. Some
popular configuration management tools are Ansible, Chef,
Puppet, and SaltStack, which were described in Chapter 5.

100 | Chapter 10: Cloud Deployments

Packer from HashiCorp

Packer is used to automate running your configuration manage-
ment on virtually any virtualization or cloud platform and to
burn a machine image if the run is successful. Packer basically
builds a virtual machine on the platform of your choosing,
SSHes into the virtual machine, runs any provisioning you spec-
ify, and burns an image. You can utilize Packer to run the con-
figuration management tool and reliably burn a machine image
to your specification.

To provision environmental configurations at boot time, you can
utilize the Amazon EC2 UserData to run commands the first time
the instance is booted. If youre using the partially baked method,
you can utilize this to configure environment-based items at boot
time. Examples of environment-based configurations might be what
server names to listen for, resolver to use, domain name to proxy to,
or upstream server pool to start with. UserData is a base64-encoded
string that is downloaded at the first boot and run. UserData can be
as simple as an environment file accessed by other bootstrapping
processes in your AMI, or it can be a script written in any language
that exists on the AML. It’s common for UserData to be a bash script
that specifies variables or downloads variables to pass to configura-
tion management. Configuration management ensures the system is
configured correctly, templates configuration files based on environ-
ment variables, and reloads services. After UserData runs, your
NGINX machine should be completely configured, in a very reliable
way.

10.2 Routing to NGINX Nodes Without an AWS
ELB

Problem

You need to route traffic to multiple active NGINX nodes or create
an active-passive failover set to achieve high availability without a
load balancer in front of NGINX.

10.2 Routing to NGINX Nodes Withoutan AWSELB | 101

Solution

Use the Amazon Route53 DNS service to route to multiple active
NGINX nodes or configure health checks and failover between an
active-passive set of NGINX nodes.

Discussion

DNS has balanced load between servers for a long time; moving to
the cloud doesn’t change that. The Route53 service from Amazon
provides a DNS service with many advanced features, all available
through an API. All the typical DNS tricks are available, such as
multiple IP addresses on a single A record and weighted A records.
When running multiple active NGINX nodes, you’ll want to use one
of these A record features to spread load across all nodes. The
round-robin algorithm is used when multiple IP addresses are listed
for a single A record. A weighted distribution can be used to distrib-
ute load unevenly by defining weights for each server IP address in
an A record.

One of the more interesting features of Route53 is its ability to
health check. You can configure Route53 to monitor the health of an
endpoint by establishing a TCP connection or by making a request
with HTTP or HTTPS. The health check is highly configurable with
options for the IP, hostname, port, URI path, interval rates, moni-
toring, and geography. With these health checks, Route53 can take
an IP out of rotation if it begins to fail. You could also configure
Route53 to failover to a secondary record in case of a failure, which
would achieve an active-passive, highly available setup.

Route53 has a geological-based routing feature that will enable you
to route your clients to the closest NGINX node to them, for the
least latency. When routing by geography, your client is directed to
the closest healthy physical location. When running multiple sets of
infrastructure in an active-active configuration, you can automati-

cally failover to another geological location through the use of
health checks.

When using Route53 DNS to route your traffic to NGINX nodes in
an Auto Scaling group, you'll want to automate the creation and
removal of DNS records. To automate adding and removing NGINX
machines to Route53 as your NGINX nodes scale, you can use Ama-
zons Auto Scaling Lifecycle Hooks to trigger scripts within the

102 | Chapter 10: Cloud Deployments

NGINX box itself or scripts running independently on Amazon
Lambda. These scripts would use the Amazon CLI or SDK to inter-
face with the Amazon Route53 API to add or remove the NGINX
machine IP and configured health check as it boots or before it is
terminated.

Also See

Amazon Route53 Global Server Load Balancing

10.3 The NLB Sandwich

Problem

You need to autoscale your NGINX Open Source layer and distrib-
ute load evenly and easily between application servers.

Solution

Create a network load balancer (NLB). During creation of the NLB
through the console, you are prompted to create a new target group.
If you do not do this through the console, you will need to create
this resource and attach it to a listener on the NLB. You create an
Auto Scaling group with a launch configuration that provisions an
EC2 instance with NGINX Open Source installed. The Auto Scaling
group has a configuration to link to the target group, which auto-
matically registers any instance in the Auto Scaling group to the tar-
get group configured on first boot. The target group is referenced by
a listener on the NLB. Place your upstream applications behind
another network load balancer and target group and then configure
NGINX to proxy to the application NLB.

Discussion

This common pattern is called the NLB sandwich (see Figure 10-1),
putting NGINX Open Source in an Auto Scaling group behind an
NLB and the application Auto Scaling group behind another NLB.
The reason for having NLBs between every layer is because the NLB
works so well with Auto Scaling groups; they automatically register
new nodes and remove those being terminated as well as run health
checks and pass traffic to only healthy nodes. It might be necessary
to build a second, internal NLB for the NGINX Open Source layer

10.3 The NLB Sandwich | 103

because it allows services within your application to call out to other
services through the NGINX Auto Scaling group without leaving the
network and re-entering through the public NLB. This puts NGINX
in the middle of all network traffic within your application, making
it the heart of your application’s traffic routing. This pattern used to
be called the elastic load balancer (ELB) sandwich; however, the NLB
is preferred when working with NGINX because the NLB is a Layer
4 load balancer, whereas ELBs and ALBs are Layer 7 load balancers.
Layer 7 load balancers transform the request via the proxy protocol
and are redundent with the use of NGINX. This pattern is needed
only for NGINX Open Source because the feature set provided by
the NLB is available in NGINX Plus.

104 | Chapter 10: Cloud Deployments

Users
VPC
NGINX
Public NLB
Public Subnet
Public Subnet
NGINX NGINX_Auto App-2
Internal NLB Saling [~ NLB
Group
i
! |
|
App-1 | |
NLB
App-1Auto App-2 Auto
Scaling Group Scaling Group
PC Co
— Traffic from users to App-1 -—~- ¥ Traffic from App-1to App-2

Figure 10-1. This image depicts NGINX in an NLB sandwich pattern
with an internal NLB for internal applications to utilize. A user makes
a request to App-1, and App-1 makes a request to App-2 through
NGINX to fulfill the user’s request.

10.4 Deploying from the AWS Marketplace

Problem

You need to run NGINX Plus in AWS with ease with a pay-as-you-
go license.

10.4 Deploying from the AWS Marketplace | 105

Solution

Deploy through the AWS Marketplace. Visit the AWS Marketplace
and search “NGINX Plus” (see Figure 10-2). Select the AMI that is
based on the Linux distribution of your choice; review the details,
terms, and pricing; then click the Continue link. On the next page
you'll be able to accept the terms and deploy NGINX Plus with a
single click, or accept the terms and use the AMI.

Amazon Web Services Home

{;Iéwsmarketplace

Helo, Derek (Sign out) Your Account Help Sellin AWS Marketplace

Shop Al Categories ~ [NIINIA] m IO Your Software

SrrEEiT NGINX (113 results) snoving 1- 10 E)
All Categories.
Software Infrastructure (99) NGiINX+ NGINXPlus - Amazon Linux AMI
Dt Took) NP for AWS # (10) | Version 15 | Sold by Nginx Software, Inc
Business Software (54) Free Trial Starting from $0.09/he or from $1,900.00lyr (up to 13% savings) for software + AWS usage fees
NGINX Plus is a high performance load balancer, edge cache and origin server for web content,

Filters streaming media and AP! traffic. It complements the load-balancing capabilities.
Operating System LinuxIUri, Amazon Linux 2016.03 - 64-bit Amazon Machine Image (AM)
+ All Windows

NGINX+ NGINX Plus - Ubuntu AMI

+ All LinuxiUnix
(5) | Version 1.5 | Sold by Nginx Software, Inc.

Software Pricing Plans

ain Free Trial Starting from $0.09/hr or from $1,900.00lyr (up {0 13% savings) for software + AWS usage fees
ree
NGINX Plus is a high performance load balancer, edge cache and origin server for web content,
Houry (92) streaming media and API traffic. Run by 36% of web sites hosted on AWS (ref.
Annual (59) Linux/Uri, Ubuntu 14.04.5 - 64-bit Amazon Machine Image (AM)
Bring Your Own License (3)
i NGINX Plus - Ubuntu AMI (HVM]
Software Free Tria NGiNX+ (HVN
NGINK S for AW, #% (1) | Version 1.1 | Sold by Nginx Software, Inc.
Free Trial (49)
Free Trial Starting from $0.09/hr or from $1,900.00lyr (up to 13% savings) for software + AWS usage fees

Delivery Method NGINX Plus is a high performance load balancer, edge cache and origin server for web content,
Amazon Machine Image (109) streaming media and API traffic. It complements the load-balancing capabilties.

CloudFormation Stack (7) Linux/Unix, Ubuntu 14.045 - 64-bit Amazon Machine Image (AMI)

Figure 10-2. Searching for NGINX on the AWS Marketplace

Discussion

The AWS Marketplace solution to deploying NGINX Plus provides
ease of use and a pay-as-you-go license. Not only do you have noth-
ing to install, but you also have a license without jumping through
hoops like getting a purchase order for a year license. This solution
enables you to try NGINX Plus easily without commitment. You can
also use the NGINX Plus Marketplace AMI as overflow capacity. It’s
a common practice to purchase your expected workload worth of
licenses and use the Marketplace AMI in an Auto Scaling group as
overflow capacity. This strategy ensures you only pay for as much
licensing as you use.

106 | Chapter 10: Cloud Deployments

10.5 Creating an NGINX Virtual Machine Image
on Azure

Problem

You need to create a virtual machine (VM) image of your own
NGINX server configured as you see fit to quickly create more
servers or use in scale sets.

Solution

Create a VM from a base operating system of your choice. Once the
VM is booted, log in and install NGINX or NGINX Plus in your
preferred way, either from source or through the package manage-
ment tool for the distribution you’re running. Configure NGINX as
desired and create a new VM image. To create a VM image, you
must first generalize the VM. To generalize your VM, you need to
remove the user that Azure provisioned, connect to it over SSH,
and run the following command:

$ sudo waagent -deprovision+user -force

This command deprovisions the user that Azure provisioned when
creating the VM. The -force option simply skips a confirmation
step. After you've installed NGINX or NGINX Plus and removed the
provisioned user, you can exit your session.

Connect your Azure CLI to your Azure account using the Azure
login command, then ensure you’re using the Azure Resource Man-
ager mode. Now deallocate your VM:

$ azure vm deallocate -g <ResourceGroupName> \
-n <VirtualMachineName>
Once the VM is deallocated, you will be able to generalize it with the
azure vm generalize command:
$ azure vm generalize -g <ResourceGroupName> \
-n <VirtualMachineName>
After your VM is generalized, you can create an image. The follow-
ing command will create an image and also generate an Azure
Resources Manager (ARM) template for you to use to boot this
image:

$ azure vm capture <ResourceGroupName> <VirtualMachineName> \
<ImageNamePrefix> -t <TemplateName>. json

10.5 Creating an NGINX Virtual Machine Image on Azure | 107

The command line will produce output saying that your image has
been created, that it’s saving an ARM template to the location you
specified, and that the request is complete. You can use this ARM
template to create another VM from the newly created image. How-
ever, to use this template Azure has created, you must first create a
new network interface:

$ azure network nic create <ResourceGroupName> \
<NetworkInterfaceName> \
<Region> \
--subnet-name <SubnetName> \
--subnet-vnet-name <VirtualNetworkName>

This command output will detail information about the newly cre-
ated network interface. The first line of the output data will be the
network interface ID, which you will need to utilize the ARM tem-
plate created by Azure. Once you have the ID, you can create a
deployment with the ARM template:

$ azure group deployment create <ResourceGroupName> \
<DeploymentName> \
-f <TemplateName>.json

You will be prompted for multiple input variables such as vmName,
adminUserName, adminPassword, and networkInterfaceld. Enter a
name for the VM and the admin username and password. Use the
network interface ID harvested from the last command as the input
for the networkInterfaceld prompt. These variables will be passed
as parameters to the ARM template and used to create a new VM
from the custom NGINX or NGINX Plus image you've created.
After entering the necessary parameters, Azure will begin to create a
new VM from your custom image.

Discussion

Creating a custom image in Azure enables you to create copies of
your preconfigured NGINX or NGINX Plus server at will. An Azure
ARM template enables you to quickly and reliably deploy this same
server time and time again as needed. With the VM image path that
can be found in the template, you can create different sets of infra-
structure such as VM scaling sets or other VMs with different con-
figurations.

108 | Chapter 10: Cloud Deployments

Also See

Installing Azure Cross-platform CLI
Azure Cross-platform CLI Login
Capturing Linux Virtual Machine Images

10.6 Load Balancing Over NGINX Scale Sets on
Azure

Problem

You need to scale NGINX nodes behind an Azure load balancer to
achieve high availability and dynamic resource usage.

Solution

Create an Azure load balancer that is either public facing or inter-
nal. Deploy the NGINX virtual machine image created in the prior
section or the NGINX Plus image from the Marketplace described
in Recipe 10.7 into an Azure virtual machine scale set (VMSS). Once
your load balancer and VMSS are deployed, configure a backend
pool on the load balancer to the VMSS. Set up load-balancing rules
for the ports and protocols youd like to accept traffic on, and direct
them to the backend pool.

Discussion

It's common to scale NGINX to achieve high availability or to han-
dle peak loads without overprovisioning resources. In Azure you
achieve this with VMSS. Using the Azure load balancer provides
ease of management for adding and removing NGINX nodes to the
pool of resources when scaling. With Azure load balancers, youre
able to check the health of your backend pools and only pass traffic
to healthy nodes. You can run internal Azure load balancers in front
of NGINX where you want to enable access only over an internal
network. You may use NGINX to proxy to an internal load balancer
fronting an application inside of a VMSS, using the load balancer for
the ease of registering and deregistering from the pool.

10.6 Load Balancing Over NGINX Scale Sets on Azure | 109

10.7 Deploying Through the Azure
Marketplace

Problem

You need to run NGINX Plus in Azure with ease and a pay-as-you-
go license.

Solution
Deploy an NGINX Plus VM image through the Azure Marketplace:

1.

From the Azure dashboard, select the New icon, and use the
search bar to search for “NGINX.” Search results will appear.

. From the list, select the NGINX Plus Virtual Machine Image

published by NGINX, Inc.

. When prompted to choose your deployment model, select the

Resource Manager option, and click the Create button.

. You will then be prompted to fill out a form to specify the name

of your VM, the disk type, the default username and password
or SSH key-pair public key, which subscription to bill under, the
resource group youd like to use, and the location.

. Once this form is filled out, you can click OK. Your form will be

validated.

. When prompted, select a VM size, and click the Select button.

. On the next panel, you have the option to select optional con-

figurations, which will be the default based on your resource
group choice made previously. After altering these options and
accepting them, click OK.

. On the next screen, review the summary. You have the option of

downloading this configuration as an ARM template so that you
can create these resources again more quickly via a JSON tem-
plate.

. Once you've reviewed and downloaded your template, you can

click OK to move to the purchasing screen. This screen will
notify you of the costs youre about to incur from this VM
usage. Click Purchase and your NGINX Plus box will begin to
boot.

110

| Chapter 10: Cloud Deployments

Discussion

Azure and NGINX have made it easy to create an NGINX Plus VM
in Azure through just a few configuration forms. The Azure Market-
place is a great way to get NGINX Plus on demand with a pay-as-
you-go license. With this model, you can try out the features of
NGINX Plus or use it for on-demand overflow capacity of your
already licensed NGINX Plus servers.

10.8 Deploying to Google Compute Engine

Problem

You need to create an NGINX server in Google Compute Engine to
load balance or proxy for the rest of your resources in Google Com-
pute or App Engine.

Solution

Start a new VM in Google Compute Engine. Select a name for your
VM, zone, machine type, and boot disk. Configure identity and
access management, firewall, and any advanced configuration youd
like. Create the VM.

Once the VM has been created, log in via SSH or through the Goo-
gle Cloud Shell. Install NGINX or NGINX Plus through the package
manager for the given OS type. Configure NGINX as you see fit and
reload.

Alternatively, you can install and configure NGINX through the
Google Compute Engine startup script, which is an advanced con-
figuration option when creating a VM.

Discussion

Google Compute Engine offers highly configurable VMs at a
moments notice. Starting a VM takes little effort and enables a
world of possibilities. Google Compute Engine offers networking
and compute in a virtualized cloud environment. With a Google
Compute instance, you have the full capabilities of an NGINX server
wherever and whenever you need it.

10.8 Deploying to Google Compute Engine | 111

10.9 Creating a Google Compute Image

Problem

You need to create a Google Compute Image to quickly instantiate a
VM or create an instance template for an instance group.

Solution

Create a VM as described in Recipe 10.8. After installing and config-
uring NGINX on your VM instance, set the auto-delete state of the
boot disk to false. To set the auto-delete state of the disk, edit the
VM. On the Edit page under the disk configuration is a checkbox
labeled “Delete boot disk when instance is deleted” Deselect this
checkbox and save the VM configuration. Once the auto-delete state
of the instance is set to false, delete the instance. When prompted,
do not select the checkbox that offers to delete the boot disk. By per-
forming these tasks, you will be left with an unattached boot disk
with NGINX installed.

After your instance is deleted and you have an unattached boot disk,
you can create a Google Compute Image. From the Image section of
the Google Compute Engine console, select Create Image. You will
be prompted for an image name, family, description, encryption
type, and the source. The source type you need to use is disk; and
for the source disk, select the unattached NGINX boot disk. Select
Create and Google Compute Cloud will create an image from your
disk.

Discussion

You can utilize Google Cloud Images to create VMs with a boot disk
identical to the server you've just created. The value in creating
images is being able to ensure that every instance of this image is
identical. When installing packages at boot time in a dynamic envi-
ronment, unless using version locking with private repositories, you
run the risk of package version and updates not being validated
before being run in a production environment. With machine
images, you can validate that every package running on this
machine is exactly as you tested, strengthening the reliability of your
service offering.

12 | Chapter 10: Cloud Deployments

Also See

Create, Delete, and Depreciate Private Images

10.10 Creating a Google App Engine Proxy

Problem

You need to create a proxy for Google App Engine to context switch
between applications or serve HTTPS under a custom domain.

Solution

Utilize NGINX in Google Compute Cloud. Create a virtual
machine in Google Compute Engine, or create a virtual machine
image with NGINX installed and create an instance template with
this image as your boot disk. If you've created an instance tem-
plate, follow up by creating an instance group that utilizes that
template.

Configure NGINX to proxy to your Google App Engine endpoint.
Make sure to proxy to HTTPS because Google App Engine is public,
and you’ll want to ensure you do not terminate HTTPS at your
NGINX instance and allow information to travel between NGINX
and Google App Engine unsecured. Because App Engine provides
just a single DNS endpoint, you’ll be using the proxy_pass directive
rather than upstream blocks in the open source version of NGINX.
When proxying to Google App Engine, make sure to set the end-
point as a variable in NGINX, then use that variable in the
proxy_pass directive to ensure NGINX does DNS resolution on
every request. For NGINX to do any DNS resolution, you’ll need to
also utilize the resolver directive and point to your favorite DNS
resolver. Google makes the IP address 8.8.8.8 available for public
use. If youre using NGINX Plus, you’ll be able to use the resolve
flag on the server directive within the upstream block, keepalive
connections, and other benefits of the upstream module when
proxying to Google App Engine.

You may choose to store your NGINX configuration files in Google
Storage, then use the startup script for your instance to pull down
the configuration at boot time. This will allow you to change your
configuration without having to burn a new image. However, it will
add to the startup time of your NGINX server.

10.10 Creating a Google App Engine Proxy | 113

Discussion

You want to run NGINX in front of Google App Engine if you're
using your own domain and want to make your application avail-
able via HTTPS. At this time, Google App Engine does not allow
you to upload your own SSL certificates. Therefore, if youd like to
serve your app under a domain other than appspot.com with
encryption, you'll need to create a proxy with NGINX to listen at
your custom domain. NGINX will encrypt communication between
itself and your clients, as well as between itself and Google App
Engine.

Another reason you may want to run NGINX in front of Google
App Engine is to host many App Engine apps under the same
domain and use NGINX to do URI-based context switching. Micro-
services are a popular architecture, and it's common for a proxy like
NGINX to conduct the traffic routing. Google App Engine makes it
easy to deploy applications, and in conjunction with NGINX, you
have a full-fledged application delivery platform.

114 | Chapter 10: Cloud Deployments

CHAPTER 11
Containers/Microservices

11.0 Introduction

Containers offer a layer of abstraction at the application layer, shift-
ing the installation of packages and dependencies from the deploy to
the build process. This is important because engineers are now ship-
ping units of code that run and deploy in a uniform way regardless
of the environment. Promoting containers as runnable units reduces
the risk of dependency and configuration snafus between environ-
ments. Given this, there has been a large drive for organizations to
deploy their applications on container platforms. When running
applications on a container platform, it's common to containerize as
much of the stack as possible, including your proxy or load balancer.
NGINX and NGINX Plus containerize and ship with ease. They also
include many features that make delivering containerized applica-
tions fluid. This chapter focuses on building NGINX and NGINX
Plus container images, features that make working in a container-
ized environment easier, and deploying your image on Kubernetes
and OpenShift.

11.1 DNS SRV Records

Problem

Youd like to use your existing DNS SRV record implementation as
the source for upstream servers with NGINX Plus.

115

Solution

Specify the service directive with a value of http on an upstream
server to instruct NGINX to utilize the SRV record as a load-
balancing pool:

http {
resolver 10.0.0.2;

upstream backend {
zone backends 64k;
server api.example.internal service=http resolve;

}

This feature is an NGINX Plus exclusive. The configuration
instructs NGINX Plus to resolve DNS from a DNS server at 10.0.0.2
and set up an upstream server pool with a single server directive.
This server directive specified with the resolve parameter is
instructed to periodically re-resolve the domain name. The ser
vice=http parameter and value tells NGINX that this is an SRV
record containing a list of IPs and ports and to load balance over
them as if they were configured with the server directive.

Discussion

Dynamic infrastructure is becoming ever more popular with the
demand and adoption of cloud-based infrastructure. Autoscaling
environments scale horizontally, increasing and decreasing the
number of servers in the pool to match the demand of the load.
Scaling horizontally demands a load balancer that can add and
remove resources from the pool. With an SRV record, you offload
the responsibility of keeping the list of servers to DNS. This type of
configuration is extremely enticing for containerized environments
because you may have containers running applications on variable
port numbers, possibly at the same IP address. It's important to note
that UDP DNS record payload is limited to about 512 bytes.

11.2 Using the Official NGINX Image

Problem

You need to get up and running quickly with the NGINX image
from Docker Hub.

116 | Chapter 11: Containers/Microservices

Solution

Use the NGINX image from Docker Hub. This image contains a
default configuration. You'll need to either mount a local configura-
tion directory or create a Dockerfile and ADD in your configuration
to the image build to alter the configuration. Here, we mount a vol-
ume where NGINX’s default configuration serves static content to
demonstrate its capabilities by using a single command:

$ docker run --name my-nginx -p 80:80 \
-v [/path/to/content:/usr/share/nginx/html:ro -d nginx

The docker command pulls the nginx:latest image from Docker
Hub if it’s not found locally. The command then runs this NGINX
image as a Docker container, mapping localhost:80 to port 80 of
the NGINX container. It also mounts the local directory /path/to/
content/ as a container volume at /usr/share/nginx/html/ as read only.
The default NGINX configuration will serve this directory as static
content. When specifying mapping from your local machine to a
container, the local machine port or directory comes first, and the
container port or directory comes second.

Discussion

NGINX has made an official Docker image available via Docker
Hub. This official Docker image makes it easy to get up and going
very quickly in Docker with your favorite application delivery plat-
form, NGINX. In this section, we were able to get NGINX up and
running in a container with a single command! The official NGINX
Docker image mainline that we used in this example is built off of
the Debian Jessie Docker image. However, you can choose official
images built off of Alpine Linux. The Dockerfile and source for
these official images are available on GitHub. You can extend the
official image by building your own Dockerfile and specifying the
official image in the FROM command.

Also See

Official NGINX Docker image, NGINX
Docker repo on GitHub

11.2 Using the Official NGINX Image | 117

11.3 Creating an NGINX Dockerfile

Problem

You need to create an NGINX Dockerfile in order to create a Docker
image.

Solution

Start FROM your favorite distribution’s Docker image. Use the RUN
command to install NGINX. Use the ADD command to add your
NGINX configuration files. Use the EXPOSE command to instruct
Docker to expose given ports or do this manually when you run the
image as a container. Use CMD to start NGINX when the image is
instantiated as a container. You'll need to run NGINX in the fore-
ground. To do this, you'll need to start NGINX with -g "daemon
of f;" or add daemon off; to your configuration. This example will
use the latter with daemon off; in the configuration file within the
main context. You will also want to alter your NGINX configuration
to log to /dev/stdout for access logs and /dev/stderr for error logs;
doing so will put your logs into the hands of the Docker daemon,
which will make them available to you more easily based on the log
driver you've chosen to use with Docker:

Dockerfile:
FROM centos:7

Install epel repo to get nginx and install nginx
RUN yum -y install epel-release && \
yum -y install nginx

add local configuration files into the image
ADD /nginx-conf /etc/nginx

EXPOSE 80 443

CMD ["nginx"]

The directory structure looks as follows:

}— Dockerfile

L— nginx-conf
}— conf.d
| L— default.conf
}— fastcgi.conf

118 | Chapter 11: Containers/Microservices

}— fastcgi_params
— koti-utf

— koi-win

— mime.types

— nginx.conf

}— scgi_params

— uwsgi_params

L— win-utf
I chose to host the entire NGINX configuration within this Docker
directory for ease of access to all of the configurations with only one
line in the Dockerfile to add all my NGINX configurations.

Discussion

You will find it useful to create your own Dockerfile when you
require full control over the packages installed and updates. Its
common to keep your own repository of images so that you know
your base image is reliable and tested by your team before running it
in production.

11.4 Building an NGINX Plus Image

Problem

You need to build an NGINX Plus Docker image to run NGINX
Plus in a containerized environment.

Solution

Use this Dockerfile to build an NGINX Plus Docker image. You’ll
need to download your NGINX Plus repository certificates and keep
them in the directory with this Dockerfile named nginx-repo.crt and
nginx-repo.key, respectively. With that, this Dockerfile will do the
rest of the work installing NGINX Plus for your use and linking
NGINX access and error logs to the Docker log collector.

FROM debian:stretch-slim
LABEL maintainer="NGINX <docker-maint@nginx.com>"

Download certificate and key from the customer portal
(https://cs.nginx.com) and copy to the build context

COPY nginx-repo.crt /etc/ssl/nginx/
COPY nginx-repo.key /etc/ssl/nginx/

11.4 Building an NGINX PlusImage | 119

Install NGINX Plus
RUN set -x \
&& APT_PKG="Acquire::https::plus-pkgs.nginx.com::" \
&& REPO_URL="https://plus-pkgs.nginx.com/debian" \
&& apt-get update && apt-get upgrade -y \
&& apt-get install \
--no-install-recommends --no-install-suggests\
-y apt-transport-https ca-certificates gnupgl \

&& '\
NGINX_GPGKEY=573BFD6B3D8FBC641079A6ABABF5BD827BDIBF62;\
found=""; \

for server in \
ha.pool.sks-keyservers.net \
hkp://keyserver.ubuntu.com:80 \
hkp://p80.pool.sks-keyservers.net:80 \
pgp.mit.edu \

; do \

E

echo "Fetching GPG key SNGINX_GPGKEY from $server"; \
apt-key adv --keyserver "$server" --keyserver-options \

timeout=10 --recv-keys "SNGINX_GPGKEY" \
&& found=yes \
&& break;\

done;\

test -z "$found" && echo >&2 \

"error: failed to fetch GPG key SNGINX_GPGKEY" && exit 1; \
echo "${APT_PKG}Verify-Peer "true";"\
>> [etc/apt/apt.conf.d/90nginx \

&& echo \

"S{APT_PKG}Verify-Host "true";">>\
/etc/apt/apt.conf.d/90nginx \

&& echo "${APT_PKG}SslCert \
"/etc/ssl/nginx/nginx-repo.crt";" >> \
J/etc/apt/apt.conf.d/90nginx \

&& echo "${APT_PKG}SslKey \
"Jetc/ssl/nginx/nginx-repo.key";" >> \

/etc/apt/apt.conf.d/90nginx \
&& printf \
"deb ${REPO_URL} stretch nginx-plus" \
> [etc/apt/sources.list.d/nginx-plus.list \

&& apt-get update && apt-get install -y nginx-plus \

&& apt-get remove --purge --auto-remove -y gnupgl \

& rm -rf /var/lib/apt/lists/*

Forward request logs to Docker log collector
RUN 1n -sf /dev/stdout /var/log/nginx/access.log \
&& ln -sf /dev/stderr /var/log/nginx/error.log

EXPOSE 80
STOPSIGNAL SIGTERM

120 | Chapter 11: Containers/Microservices

CMD ["nginx", "-g", "daemon off;"]

To build this Dockerfile into a Docker image, run the following in
the directory that contains the Dockerfile and your NGINX Plus
repository certificate and key:

$ docker build --no-cache -t nginxplus .

This docker build command uses the flag --no-cache to ensure
that whenever you build this, the NGINX Plus packages are pulled
fresh from the NGINX Plus repository for updates. If it’s acceptable
to use the same version on NGINX Plus as the prior build, you can
omit the - -no-cache flag. In this example, the new Docker image is
tagged nginxplus.

Discussion

By creating your own Docker image for NGINX Plus, you can con-
figure your NGINX Plus container however you see fit and drop it
into any Docker environment. This opens up all of the power and
advanced features of NGINX Plus to your containerized environ-
ment. This Dockerfile does not use the Dockerfile property ADD to
add in your configuration; you will need to add in your configura-
tion manually.

Also See
NGINX blog on Docker images

11.5 Using Environment Variables in NGINX

Problem

You need to use environment variables inside your NGINX configu-
ration in order to use the same container image for different envi-
ronments.

Solution

Use the ngx_http_perl_module to set variables in NGINX from
your environment:

daemon off;
env APP_DNS;

11.5 Using Environment Variables in NGINX | 121

include /usr/share/nginx/modules/*.conf;

http {
perl_set Supstream_app 'sub { return $SENV{"APP_DNS"}; }';
server {

location / {
proxy_pass https://Supstream_app;
}
}
}

To use perl_set you must have the ngx_http_perl_module
installed; you can do so by loading the module dynamically or stati-
cally if building from source. NGINX by default wipes environment
variables from its environment; you need to declare any variables
you do not want removed with the env directive. The perl_set
directive takes two parameters: the variable name youd like to set
and a perl string that renders the result.

The following is a Dockerfile that loads the ngx_http_perl_module
dynamically, installing this module from the package management
utility. When installing modules from the package utility for Cen-
tOS, they’re placed in the /usr/lib64/nginx/modules/ directory, and
configuration files that dynamically load these modules are placed in
the /usr/share/nginx/modules/ directory. This is why in the preceding
configuration snippet we include all configuration files at that path:

FROM centos:7

Install epel repo to get nginx and install nginx
RUN yum -y install epel-release && \
yum -y install nginx nginx-mod-http-perl

add local configuration files into the image
ADD /nginx-conf /etc/nginx

EXPOSE 80 443

CMD ["nginx"]

Discussion

A typical practice when using Docker is to utilize environment vari-
ables to change the way the container operates. You can use environ-
ment variables in your NGINX configuration so that your NGINX
Dockerfile can be used in multiple, diverse environments.

122 | Chapter 11: Containers/Microservices

11.6 Kubernetes Ingress Controller

Problem

You are deploying your application on Kubernetes and need an
ingress controller.

Solution

Ensure that you have access to the ingress controller image. For
NGINX, you can use the nginx/nginx-ingress image from Docker-
Hub. For NGINX Plus, you will need to build your own image and
host it in your private Docker registry. You can find instructions on
building and pushing your own NGINX Plus Kubernetes Ingress
Controller on NGINX Inc’s GitHub.

Visit the Kubernetes Ingress Controller Deployments folder in the
kubernetes-ingress repository on GitHub. The commands that fol-
low will be run from within this directory of a local copy of the
repository.
Create a namespace and a service account for the ingress controller;
both are named nginx-ingress:

$ kubectl apply -f common/ns-and-sa.yaml

Create a secret with a TLS certificate and key for the ingress control-
ler:

$ kubectl apply -f common/default-server-secret.yaml

This certificate and key are self-signed and created by NGINX Inc.
for testing and example purposes. It's recommended to use your
own because this key is publicly available.

Optionally, you can create a config map for customizing NGINX
configuration (the config map provided is blank; however, you can
read more about customization and annotation here):

$ kubectl apply -f common/nginx-config.yaml

If Role-Based Access Control (RBAC) is enabled in your cluster, cre-
ate a cluster role and bind it to the service account. You must be a
cluster administrator to perform this step:

$ kubectl apply -f rbac/rbac.yaml

11.6 Kubernetes Ingress Controller | 123

Now deploy the ingress controller. Two example deployments are
made available in this repository: a Deployment and a DaemonSet.
Use a Deployment if you plan to dynamically change the number of
ingress controller replicas. Use a DaemonSet to deploy an ingress
controller on every node or a subset of nodes.

If you plan to use the NGINX Plus Deployment manifests, you must
alter the YAML file and specify your own registry and image.

For NGINX Deployment:

$ kubectl apply -f deployment/nginx-ingress.yaml
For NGINX Plus Deployment:

$ kubectl apply -f deployment/nginx-plus-ingress.yaml
For NGINX DaemonSet:

$ kubectl apply -f daemon-set/nginx-ingress.yaml
For NGINX Plus DaemonSet:

$ kubectl apply -f daemon-set/nginx-plus-ingress.yaml
Validate that the ingress controller is running:

$ kubectl get pods --namespace=nginx-ingress

If you created a DaemonSet, port 80 and 443 of the ingress control-
ler are mapped to the same ports on the node where the container is
running. To access the ingress controller, use those ports and the IP
address of any of the nodes on which the ingress controller is run-
ning. If you deployed a Deployment, continue with the next steps.

For the Deployment methods, there are two options for accessing
the ingress controller pods. You can instruct Kubernetes to ran-
domly assign a node port that maps to the ingress controller pod.
This is a service with the type NodePort. The other option is to cre-
ate a service with the type LoadBalancer. When creating a service of
type LoadBalancer, Kubernetes builds a load balancer for the given
cloud platform, such as Amazon Web Services, Microsoft Azure,
and Google Cloud Compute.

To create a service of type NodePort, use the following:

$ kubectl create -f service/nodeport.yaml

124 | Chapter 11: Containers/Microservices

To statically configure the port that is opened for the pod, alter the
YAML and add the attribute nodePort: {port} to the configuration
of each port being opened.

To create a service of type LoadBalancer for Google Cloud Compute
or Azure, use this code:

$ kubectl create -f service/loadbalancer.yaml
To create a service of type LoadBalancer for Amazon Web Services:

$ kubectl create -f service/loadbalancer-aws-elb.yaml

On AWS, Kubernetes creates a classic ELB in TCP mode with the
PROXY protocol enabled. You must configure NGINX to use the
PROXY protocol. To do so, you can add the following to the config
map mentioned previously in reference to the file common/nginx-

config.yaml.

proxy-protocol: "True"
real-ip-header: "proxy_protocol"
set-real-ip-from: "0.0.0.0/0"

Then, update the config map:
$ kubectl apply -f common/nginx-config.yaml

You can now address the pod by its NodePort or by making a
request to the load balancer created on its behalf.

Discussion

As of this writing, Kubernetes is the leading platform in container
orchestration and management. The ingress controller is the edge
pod that routes traffic to the rest of your application. NGINX fits
this role perfectly and makes it simple to configure with its annota-
tions. The NGINX-Ingress project offers an NGINX Open Source
ingress controller out of the box from a DockerHub image, and
NGINX Plus through a few steps to add your repository certificate
and key. Enabling your Kubernetes cluster with an NGINX ingress
controller provides all the same features of NGINX but with the
added features of Kubernetes networking and DNS to route traffic.

11.6 Kubernetes Ingress Controller | 125

11.7 OpenShift Router

Problem

You are deploying your application on OpenShift and would like to
use NGINX as a router.

Solution

Build the Router image and upload it to your private registry. You
can find the source files for the image in the Origin Repository. It’s
important to push your Router image to the private registry before
deleting the default Router because it will render the registry
unavailable.

Log in to the OpenShift Cluster as an admin:
$ oc login -u system:admin
Select the default project:
$ oc project default
Back up the default Router config, in case you need to recreate it:

$ oc get -o yaml service/router dc/router \
clusterrolebinding/router-router-role \
serviceaccount/router > default-router-backup.yaml

Delete the Router:
$ oc delete -f default-router-backup.yaml
Deploy the NGINX Router:

$ oc adm router router --images={image} --type='"' \
--selector="node-role.kubernetes.io/infra=true'

In this example, the {image} must point to the NGINX Router
image in your registry. The selector parameter specifies a label selec-
tor for nodes where the Router will be deployed: node-
role.kubernetes.io/infra=true. Use a selector that makes sense
for your environment.

Validate that your NGINX Router pods are running:
$ oc get pods

You should see a Router pod with the name router-1-{string}.

126 | Chapter 11: Containers/Microservices

By default, the NGINX stub status page is available via port 1936 of
the node where the Router is running (you can change this port by
using the STATS_PORT env variable). To access the page outside of
the node, you need to add an entry to the IPtables rules for that
node:

$ sudo iptables -I OS_FIREWALL_ALLOW -p tcp -s {ip range} \
-m tcp --dport 1936 -j ACCEPT
Open your browser to http://{node-ip}:1936/stub_status to access the
stub status page.

Discussion

The OpenShift Router is the entry point for external requests bound
for applications running on OpenShift. The Router’s job is to receive
incoming requests and direct them to the appropriate application
pod. The load-balancing and routing abilities of NGINX make it a
great choice for use as an OpenShift Router. Switching out the
default OpenShift Router for an NGINX Router enables all of the
features and power of NGINX as the ingress of your OpenStack
application.

11.7 Openshift Router | 127

CHAPTER 12
High-Availability
Deployment Modes

12.0 Introduction

Fault-tolerant architecture separates systems into identical, inde-
pendent stacks. Load balancers like NGINX are employed to distrib-
ute load, ensuring that what’s provisioned is utilized. The core
concepts of high availability are load balancing over multiple active
nodes or an active-passive failover. Highly available applications
have no single points of failure; every component must use one of
these concepts, including the load balancers themselves. For us, that
means NGINX. NGINX is designed to work in either configuration:
multiple active or active-passive failover. This chapter details techni-
ques on how to run multiple NGINX servers to ensure high availa-
bility in your load-balancing tier.

12.1 NGINX HA Mode

Problem

You need a highly available load-balancing solution.

129

Solution

Use NGINX Plus’s highly available (HA) mode with keepalived by
installing the nginx-ha-keepalived package from the NGINX Plus
repository.

Discussion

The nginx-ha-keepalived package is based on keepalived and
manages a virtual IP address exposed to the client. Another process
is run on the NGINX server that ensures that NGINX Plus and the
keepalived process are running. Keepalived is a process that utilizes
the Virtual Router Redundancy Protocol (VRRP), sending small
messages often referred to as heartbeats, to the backup server. If the
backup server does not receive the heartbeat for three consecutive
periods, the backup server initiates the failover, moving the virtual
IP address to itself and becoming the master. The failover capabili-
ties of nginx-ha-keepalived can be configured to identify custom
failure situations.

12.2 Load-Balancing Load Balancers with DNS

Problem

You need to distribute load between two or more NGINX servers.

Solution

Use DNS to round robin across NGINX servers by adding multiple
IP addresses to a DNS A record.

Discussion

When running multiple load balancers, you can distribute load via
DNS. The A record allows for multiple IP addresses to be listed
under a single, fully qualified domain name. DNS will automatically
round robin across all the IPs listed. DNS also offers weighted round
robin with weighted records, which works in the same way as
weighted round robin in NGINX as described in Chapter 1. These
techniques work great. However, a pitfall can be removing the
record when an NGINX server encounters a failure. There are DNS

130 | Chapter 12: High-Availability Deployment Modes

providers—Amazon Route53 for one, and Dyn DNS for another—
that offer health checks and failover with their DNS offering, which
alleviates these issues. If you are using DNS to load balance over
NGINX, when an NGINX server is marked for removal, it’s best to
follow the same protocols that NGINX does when removing an
upstream server. First, stop sending new connections to it by remov-
ing its IP from the DNS record, then allow connections to drain
before stopping or shutting down the service.

12.3 Load Balancing on EC2

Problem

You're using NGINX on AWS, and the NGINX Plus HA does not
support Amazon IPs.

Solution

Put NGINX behind an AWS NLB by configuring an Auto Scaling
group of NGINX servers and linking the Auto Scaling group to a
target group and then attach the target group to the NLB. Alterna-
tively, you can place NGINX servers into the target group manually
by using the AWS console, command-line interface, or APL

Discussion

The HA solution from NGINX Plus based on keepalived will not
work on AWS because it does not support the floating virtual IP
address, since EC2 IP addresses work in a different way. This does
not mean that NGINX can’t be HA in the AWS cloud; in fact, the
opposite is true. The AWS NLB is a product offering from Amazon
that will natively load balance over multiple, physically separated
data centers called availability zones, provide active health checks,
and a DNS CNAME endpoint. A common solution for HA NGINX
on AWS is to put an NGINX layer behind the NLB. NGINX servers
can be automatically added to and removed from the target group as
needed. The NLB is not a replacement for NGINX; there are many
things NGINX offers that the NLB does not, such as multiple load-
balancing methods, rate limiting, caching, and Layer 7 routing. The
AWS ALB does perform Layer 7 load balancing based on the URI
path and host heade, but it does not by itself offer features NGINX

12.3Load BalancingonEC2 | 131

does, such as WAF caching, bandwidth limiting, HTTP/2 server
push, and more. In the event that the NLB does not fit your need,
there are many other options. One option is the DNS solution,
Route53. The DNS product from AWS offers health checks and
DNS failover.

12.4 Configuration Synchronization

Problem

You're running a HA NGINX Plus tier and need to synchronize con-
figuration across servers.

Solution

Use the NGINX Plus exclusive configuration synchronization fea-
ture. To configure this feature, follow these steps:

Install the nginx-sync package from the NGINX Plus package
repository.

For RHEL or CentOS:
$ sudo yum install nginx-sync
For Ubuntu or Debian:
$ sudo apt-get install nginx-sync
Grant the master machine SSH access as root to the peer machines.

Generate an SSH authentication key pair for root and retrieve the
public key:

$ sudo ssh-keygen -t rsa -b 2048
$ sudo cat /root/.ssh/id_rsa.pub
ssh-rsa AAAAB3Nz4rFgt...vgaD root@nodel

Get the IP address of the master node:

$ ip addr
1: lo: mtu 65536 qdisc noqueue state UNKNOWN group default
1ink/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_lft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_lft forever
2: eth®: mtu 1500 qdisc pfifo_fast state UP group default qlen \
1000
link/ether 52:54:00:34:6c:35 brd ff:ff:ff:ff:ff:ff

132 | Chapter 12: High-Availability Deployment Modes

inet 192.168.1.2/24 brd 192.168.1.255 scope global eth®
valid_1ft forever preferred_lft forever

inet6 fe80::5054:ff:fe34:6c35/64 scope link
valid_1ft forever preferred_lft forever

The ip addr command will dump information about interfaces on
the machine. Disregard the loopback interface, which is normally
the first. Look for the IP address following inet for the primary
interface. In this example, the IP address is 192.168.1.2.

Distribute the public key to the root user’s authorized_keys file on
each peer node, and specify to authorize only from the master’s IP
address:

$ sudo echo ‘from="192.168.1.2" ssh-rsa AAAAB3Nz4rFgt...vgaD \
root@nodel' >> /root/.ssh/authorized_keys

Add the following line to /etc/ssh/sshd_config and reload sshd on all
nodes:

$ sudo echo 'PermitRootLogin without-password' >> \
/etc/ssh/sshd_config
$ sudo service sshd reload

Verify that the root user on the master node can ssh to each of the
peer nodes without a password:

$ sudo ssh root@node2.example.com

Create the configuration file /etc/nginx-sync.conf on the master
machine with the following configuration:

NODES="node2.example.com node3.example.com node4.example.com"

CONFPATHS="/etc/nginx/nginx.conf /etc/nginx/conf.d"

EXCLUDE="default.conf"
This example configuration demonstrates the three common config-
uration parameters for this feature: NODES, CONFIGPATHS, and
EXCLUDE. The NODES parameter is set to a string of hostnames or IP
addresses separated by spaces; these are the peer nodes to which the
master will push its configuration changes. The CONFIGPATHS
parameter denotes which files or directories should be synchron-
ized. Lastly, you can use the EXCLUDE parameter to exclude configu-
ration files from synchronization. In our example, the master pushes
configuration changes of the main NGINX configuration file and
includes the directory /etc/nginx/nginx.conf and /etc/nginx/conf.d to
peer nodes named node2.example.comnode3.example.com and
node4.example.com. If the synchronization process finds a file

12.4 Configuration Synchronization | 133

named default.conf, it will not be pushed to the peers, because it’s
configured as an EXCLUDE.

There are advanced configuration parameters to configure the loca-
tion of the NGINX binary, RSYNC binary, SSH binary, diff binary,
lockfile location, and backup directory. There is also a parameter
that utilizes sed to template given files. For more information about
the advanced parameters, see Configuration Sharing.

Test your configuration:

$ nginx-sync.sh -h # display usage info

$ nginx-sync.sh -c node2.example.com # compare config to node2
$ nginx-sync.sh -C # compare master config to all peers

$ nginx-sync.sh # sync the config & reload NGINX on peers

Discussion

This NGINX Plus exclusive feature enables you to manage multiple
NGINX Plus servers in a highly available configuration by updating
only the master node and synchronizing the configuration to all
other peer nodes. By automating the synchronization of configura-
tion, you limit the risk of mistakes when transferring configurations.
The nginx-sync.sh application provides some safeguards to pre-
vent sending bad configurations to the peers. They include testing
the configuration on the master, creating backups of the configura-
tion on the peers, and validating the configuration on the peer
before reloading. Although it’s preferable to synchronize your con-
figuration by using configuration management tools or Docker, the
NGINX Plus configuration synchronization feature is valuable if
you have yet to make the big leap to managing environments in this
way.

12.5 State Sharing with Zone Sync

Problem

You need NGINX Plus to synchronize its shared memory zones
across a fleet of highly available servers.

Solution

Use the sync parameter when configuring an NGINX Plus shared
memory zone:

134 | Chapter 12: High-Availability Deployment Modes

stream {
resolver 10.0.0.2 valid=20s;

server {
listen 9000;
zone_sync;
zone_sync_server nginx-cluster.example.com:9000 resolve;
... Security measures
}
}
http {
upstream my_backend {
zone my_backend 64k;
server backends.example.com resolve;
sticky learn zone=sessions:im
create=$upstream_cookie_session
lookup=$cookie_session
sync;
}
server {
listen 80;
location / {
proxy_pass http://my_backend;
}
}
}
Discussion

The zone sync module is an NGINX Plus exclusive feature that
enables NGINX Plus to truly cluster. As shown in the configuration,
you must set up a stream server configured as the zone_sync. In the
example, this is the server listening on port 96000. NGINX Plus com-
municates with the rest of the servers defined by the
zone_sync_server directive. You can set this directive to a domain
name that resolves to multiple IP addresses for dynamic clusters, or
statically define a series of zone_sync_server directives. You should
restrict access to the zone sync server; there are specific SSL/TLS
directives for this module for machine authentication. The benefit of
configuring NGINX Plus into a cluster is that you can synchronize
shared memory zones for rate limiting, sticky learn sessions, and the
key-value store. The example provided shows the sync parameter
tacked on to the end of a sticky learn directive. In this example, a
user is bound to an upstream server based on a cookie named ses
sion. Without the zone sync module if a user makes a request to a

12.5 State Sharing with Zone Sync | 135

different NGINX Plus server, he could lose his session. With the
zone sync module, all of the NGINX Plus servers are aware of the
session and to which upstream server it’s bound.

136 | Chapter 12: High-Availability Deployment Modes

CHAPTER 13
Advanced Activity Monitoring

13.0 Introduction

To ensure that your application is running at optimal performance
and precision, you need insight into the monitoring metrics about
its activity. NGINX Plus offers an advanced monitoring dashboard
and a JSON feed to provide in-depth monitoring about all requests
that come through the heart of your application. The NGINX Plus
activity monitoring provides insight into requests, upstream server
pools, caching, health, and more. This chapter details the power and
possibilities of the NGINX Plus dashboard, the NGINX Plus API,
and the Open Source stub status module.

13.1 Enable NGINX Open Source Stub Status

Problem

You need to enable basic monitoring for NGINX.

Solution

Enable the stub_status module in a location block within a
NGINX HTTP server:

location /stub_status {
stub_status;
allow 127.0.0.1;
deny all;

137

Set IP restrictions as appropriate

}

Test your configuration by making a request for the status:

$ curl localhost/stub_status

Active connections: 1

server accepts handled requests
111

Reading: 0 Writing: 1 Waiting: 0

Discussion

The stub_status module enables some basic monitoring of the
Open Source NGINX server. The information that is returned pro-
vides insight into the number of active connections as well as the
total connections accepted, connections handled, and requests
served. The current number of connections being read, written, or
in a waiting state is also shown. The information provided is global
and is not specific to the parent server where the stub_status
directive is defined. This means that you can host the status on a
protected server. This module provides active connection counts as
embedded variables for use in logs and elsewhere. These variables
are Sconnections_active, S$connections_reading, $connec
tions_writing, and $Sconnections_watiting.

13.2 Enabling the NGINX Plus Monitoring
Dashboard Provided by NGINX Plus

Problem

You require in-depth metrics about the traffic flowing through your
NGINX Plus server.

Solution

Utilize the real-time activity monitoring dashboard:

server {
...
location /api {
api [write=on];
Directives limiting access to the API
See chapter 7

138 | Chapter 13: Advanced Activity Monitoring

location = /dashboard.html {
root /usr/share/nginx/html;
}
}

The NGINX Plus configuration serves the NGINX Plus status moni-
toring dashboard. This configuration sets up an HTTP server to
serve the API and the status dashboard. The dashboard is served as
static content out of the /usr/share/nginx/html directory. The dash-
board makes requests to the API at /api/ in order to retrieve and dis-
play the status in real time.

Discussion

NGINX Plus provides an advanced status monitoring dashboard.
This status dashboard provides a detailed status of the NGINX sys-
tem, such as number of active connections, uptime, upstream server
pool information, and more. For a glimpse of the console, see
Figure 13-1.

The landing page of the status dashboard provides an overview of
the entire system. Clicking into the Server Zones tab lists details
about all HTTP servers configured in the NGINX configuration,
detailing the number of responses from 1XX to 5XX and an overall
total as well as requests per second and the current traffic through-
put. The Upstream tab details upstream server status, as if it were in
a failed state, how many requests it has served, and a total of how
many responses have been served by status code, as well as other
statistics such as how many health checks it has passed or failed. The
TCP/UDP Zones tab details the amount of traffic flowing through
the TCP or UDP streams and the number of connections. The
TCP/UDP Upstream tab shows information about how much each
of the upstream servers in the TCP/UDP upstream pools is serving,
as well as health check pass and fail details and response times. The
Caches tab displays information about the amount of space utilized
for cache; the amount of traffic served, written, and bypassed; as
well as the hit ratio. The NGINX status dashboard is invaluable in
monitoring the heart of your applications and traffic flow.

13.2 Enabling the NGINX Plus Monitoring Dashboard Provided by NGINX Plus | 139

NG;MX-‘- Serverzones (%) Upstreams TCP/UDP Zones (¥) TCP/UDP Upstreams Caches Shared zones

16-p1 [« i SSL Requests
sy 7
Address 206.251.255.64 Current Accepted/s Active Idle Dropped Current Reg/s
o 7997 61 104 2 59 0 1 187

Uptime 1d 8h 27m

Server zones Upstreams ® TcPUDP Zones (V) TCP/UDP Upstre... (V) Caches
Total Warnings Total Alerts Conn total: 181848 Total Problems Total Warnings
3/ 4 /B Conn current: 0 3/ r 17
a e
Traffic Servers Traffic Servers Caches states
In: 1.31 KiB/s All: 7 /Up: 5 In: 102 B/s All: 11/Up: 5 Warm: 1
out: 612 8/5 Failed: 2 out: 193 /s Failed: 0 4 Cold: 0

© NGINX, Inc. All rights reserved.

Figure 13-1. The NGINX Plus status dashboard

Also See

NGINX Plus Status Dashboard Demo

13.3 Collecting Metrics Using the NGINX Plus
API

Problem

You need API access to the detail metrics provided by the NGINX
Plus status dashboard.

Solution

Utilize the RESTful API to collect metrics. The examples pipe the
output through json_pp to make them easier to read:

$ curl "demo.nginx.com/api/3/" | json_pp
[

"nginx",

"processes",

"connections",

"ssl",

"slabs",

"http",

"stream"

140 | Chapter 13: Advanced Activity Monitoring

The curl call requests the top level of the API, which displays other
portions of the APL

To get information about the NGINX Plus server, use the /api/{ver
sion}/nginx URI:

$ curl "demo.nginx.com/api/3/nginx" | json_pp

{
"version" : "1.15.2",
"ppid" : 79909,
"build" : "nginx-plus-ri6",
"pid" : 77242,
"address" : "206.251.255.64",
"timestamp" : "2018-09-29T23:12:20.525Z",
"load_timestamp" : "2018-09-29T710:00:00.404Z2",
"generation" : 2
}

To limit information returned by the API, use arguments:

$ curl "demo.nginx.com/api/3/nginx?fields=version,build" \

| json_pp
{
"build" : "nginx-plus-ri6",
"version" : "1.15.2"
}

You can request connection statistics from the /api/{version}/
connections URI:

$ curl "demo.nginx.com/api/3/connections" | json_pp
{

"active" : 3,

"idle" : 34,

"dropped" : 0,

"accepted" : 33614951
}

You can collect request statistics from the /api/{version}/http/
requests URI:

$ curl "demo.nginx.com/api/3/http/requests" | json_pp

{
"total" : 52107833,
"current" : 2

}
You can retrieve statistics about a particular server zone using
the /api/{version}/http/server_zones/{httpServerZoneName}
URI:

13.3 Collecting Metrics Using the NGINX Plus AP | 141

$ curl "demo.nginx.com/api/3/http/server_zones/hg.nginx.org" \
| json_pp
{

"responses" : {
"Ixx" : 0,
"5xx" : 0,
"3xx" : 938,
"4xx" 1 341,
"total" : 25245,
"2xx" : 23966

3,
"requests" : 25252,
"discarded" : 7,
"received" : 5758103,
"processing" : 0,
"sent" : 359428196

}

The API can return any bit of data you can see on the dashboard. It
has depth and follows a logical pattern. You can find links to resour-
ces at the end of this recipe.

Discussion

The NGINX Plus API can return statistics about many parts of the
NGINX Plus server. You can gather information about the NGINX
Plus server, its processes, connections, and slabs. You can also find
information about http and stream servers running within NGINX,
including servers, upstreams, upstream servers, and key-value
stores, as well as information and statistics about HTTP cache
zones. This provides you or third-party metric aggregators with an
in-depth view of how your NGINX Plus server is performing.

Also See

NGINX HTTP API Module Documentation
NGINX API Swagger Ul

142 | Chapter 13: Advanced Activity Monitoring

CHAPTER 14

Debugging and Troubleshooting
with Access Logs, Error Logs, and
Request Tracing

14.0 Introduction

Logging is the basis of understanding your application. With
NGINX you have great control over logging information meaning-
ful to you and your application. NGINX allows you to divide access
logs into different files and formats for different contexts and to
change the log level of error logging to get a deeper understanding
of what’s happening. The capability of streaming logs to a central-
ized server comes innately to NGINX through its Syslog logging
capabilities. In this chapter, we discuss access and error logs, stream-
ing over the Syslog protocol, and tracing requests end to end with
request identifiers generated by NGINX.

14.1 Configuring Access Logs

Problem

You need to configure access log formats to add embedded variables
to your request logs.

Solution

Configure an access log format:

143

http {
log_format geoproxy

'[$time_local] Sremote_addr '
'Srealip_remote_addr S$remote_user '
'$request_method S$Sserver_protocol '
'Sscheme $server_name $uri $status
'Srequest_time Sbody_bytes_sent '
'Sgeoip_city_country_code3 $geoip_region
'"$geoip_city" Shttp_x_forwarded_for '
'Supstream_status Supstream_response_time
'"Shttp_referer" "$Shttp_user_agent"';

]
[

}

This log format configuration is named geoproxy and uses a num-
ber of embedded variables to demonstrate the power of NGINX log-
ging. This configuration shows the local time on the server when the
request was made, the IP address that opened the connection, and
the IP of the client as NGINX understands it per geoip_proxy or
realip_header instructions. $remote_user shows the username of
the user authenticated by basic authentication, followed by the
request method and protocol, as well as the scheme, such as HTTP
or HTTPS. The server name match is logged as well as the request
URI and the return status code. Statistics logged include the pro-
cessing time in milliseconds and the size of the body sent to the cli-
ent. Information about the country, region, and city are logged. The
HTTP header X-Forwarded-For is included to show if the request is
being forwarded by another proxy. The upstream module enables
some embedded variables that we've used that show the status
returned from the upstream server and how long the upstream
request takes to return. Lastly we've logged some information about
where the client was referred from and what browser the client is
using. The log_format directive is only valid within the HTTP con-
text.

This log configuration renders a log entry that looks like the follow-
ing:

[25/Nov/2016:16:20:42 +0000] 10.0.1.16 192.168.0.122 Derek
GET HTTP/1.1 http www.example.com / 200 0.001 370 USA MI
"Ann Arbor" - 200 0.001 "-" "curl/7.47.0"

To use this log format, use the access_log directive, providing a
logfile path and the format name geoproxy as parameters:

server {
access_log /var/log/nginx/access.log geoproxy;

144 | Chapter 14: Debugging and Troubleshooting with Access Logs, Error Logs, and Request
Tracing

}

The access_log directive takes a logfile path and the format name
as parameters. This directive is valid in many contexts and in each
context can have a different log path and or log format.

Discussion

The log module in NGINX allows you to configure log formats for
many different scenarios to log to numerous logfiles as you see fit.
You may find it useful to configure a different log format for each
context, where you use different modules and employ those mod-
ules’ embedded variables, or a single, catchall format that provides
all the information you could ever want. It’s also possible to format
the log in JSON or XML. These logs will aid you in understanding
your traffic patterns, client usage, who your clients are, and where
theyre coming from. Access logs can also aid you in finding lag in
responses and issues with upstream servers or particular URIs.
Access logs can be used to parse and play back traffic patterns in test
environments to mimic real user interaction. There’s limitless possi-
bility for logs when troubleshooting, debugging, or analyzing your
application or market.

14.2 Configuring Error Logs

Problem

You need to configure error logging to better understand issues with
your NGINX server.

Solution
Use the error_log directive to define the log path and the log level:
error_log /var/log/nginx/error.log warn;

The error_log directive requires a path; however, the log level is
optional. This directive is valid in every context except for if state-
ments. The log levels available are debug, info, notice, warn, error,
crit, alert, or emerg. The order in which these log levels were
introduced is also the order of severity from least to most. The
debug log level is only available if NGINX is configured with the - -
with-debug flag.

14.2 Configuring ErrorLogs | 145

Discussion

The error log is the first place to look when configuration files are
not working correctly. The log is also a great place to find errors
produced by application servers like FastCGI. You can use the error
log to debug connections down to the worker, memory allocation,
client IP, and server. The error log cannot be formatted. However, it
follows a specific format of date, followed by the level, then the mes-
sage.

14.3 Forwarding to Syslog

Problem

You need to forward your logs to a Syslog listener to aggregate logs
to a centralized service.

Solution

Use the access_log and error_log directives to send your logs to a
Syslog listener:

error_log syslog:server=10.0.1.42 debug;

access_log syslog:server=10.0.1.42,tag=nginx,severity=info
geoproxy;

The syslog parameter for the error_log and access_log directives
is followed by a colon and a number of options. These options
include the required server flag that denotes the IP, DNS name, or
Unix socket to connect to, as well as optional flags such
as facility, severity, tag, and nohostname. The server option
takes a port number, along with IP addresses or DNS names. How-
ever, it defaults to UDP 514. The facility option refers to the
facility of the log message defined as one of the 23 defined in the
RFC standard for Syslog; the default value is local7. The tag option
tags the message with a value. This value defaults to nginx.
severity defaults to info and denotes the severity of the message
being sent. The nohostname flag disables adding the hostname field
into the Syslog message header and does not take a value.

146 | Chapter 14: Debugging and Troubleshooting with Access Logs, Error Logs, and Request
Tracing

Discussion

Syslog is a standard protocol for sending log messages and collect-
ing those logs on a single server or collection of servers. Sending
logs to a centralized location helps in debugging when you've got
multiple instances of the same service running on multiple hosts.
This is called aggregating logs. Aggregating logs allows you to view
logs together in one place without having to jump from server to
server and mentally stitch together logfiles by timestamp. A com-
mon log aggregation stack is ElasticSearch, Logstash, and Kibana,
also known as the ELK Stack. NGINX makes streaming these logs to
your Syslog listener easy with the access_log and error_log direc-
tives.

14.4 Request Tracing

Problem

You need to correlate NGINX logs with application logs to have an
end-to-end understanding of a request.

Solution

Use the request identifying variable and pass it to your application
to log as well:

log_format trace 'Sremote_addr - $remote_user [$time_local] '
'"Srequest" $status Sbody_bytes_sent '
'"Shttp_referer" "$http_user_agent" '
'"Shttp_x_forwarded_for" $request_id';
upstream backend {
server 10.0.0.42;

}
server {
listen 80;
add_header X-Request-ID Srequest_1id; # Return to client
location / {
proxy_pass http://backend;
proxy_set_header X-Request-ID Srequest_id; #Pass to app
access_log /var/log/nginx/access_trace.log trace;
}
}

In this example configuration, a log_format named trace is set up,
and the variable $request_id is used in the log. This $request_1id
variable is also passed to the upstream application by use of the

14.4Request Tracing | 147

proxy_set_header directive to add the request ID to a header when
making the upstream request. The request ID is also passed back to
the client through use of the add_header directive setting the
request ID in a response header.

Discussion

Made available in NGINX Plus R10 and NGINX version 1.11.0, the
$request_1id provides a randomly generated string of 32 hexadeci-
mal characters that can be used to uniquely identify requests. By
passing this identifier to the client as well as to the application, you
can correlate your logs with the requests you make. From the front-
end client, you will receive this unique string as a response header
and can use it to search your logs for the entries that correspond.
You will need to instruct your application to capture and log this
header in its application logs to create a true end-to-end relationship
between the logs. With this advancement, NGINX makes it possible
to trace requests through your application stack.

148 | Chapter 14: Debugging and Troubleshooting with Access Logs, Error Logs, and Request
Tracing

CHAPTER 15
Performance Tuning

15.0 Introduction

Tuning NGINX will make an artist of you. Performance tuning of
any type of server or application is always dependent on a number
of variable items, such as, but not limited to, the environment, use
case, requirements, and physical components involved. It's common
to practice bottleneck-driven tuning, meaning to test until you've hit
a bottleneck, determine the bottleneck, tune for limitations, and
repeat until you've reached your desired performance requirements.
In this chapter, we suggest taking measurements when performance
tuning by testing with automated tools and measuring results. This
chapter also covers connection tuning for keeping connections open
to clients as well as upstream servers, and serving more connections
by tuning the operating system.

15.1 Automating Tests with Load Drivers

Problem

You need to automate your tests with a load driver to gain consis-
tency and repeatability in your testing.

Solution

Use an HTTP load-testing tool such as Apache JMeter, Locust,
Gatling, or whatever your team has standardized on. Create a con-
figuration for your load-testing tool that runs a comprehensive test

149

on your web application. Run your test against your service. Review
the metrics collected from the run to establish a baseline. Slowly
ramp up the emulated user concurrency to mimic typical produc-
tion usage and identify points of improvement. Tune NGINX and
repeat this process until you achieve your desired results.

Discussion

Using an automated testing tool to define your test gives you a con-
sistent test to build metrics off of when tuning NGINX. You must be
able to repeat your test and measure performance gains or losses to
conduct science. Running a test before making any tweaks to the
NGINX configuration to establish a baseline gives you a basis to
work from so that you can measure if your configuration change has
improved performance or not. Measuring for each change made will
help you identify where your performance enhancements come
from.

15.2 Keeping Connections Open to Clients

Problem

You need to increase the number of requests allowed to be made
over a single connection from clients and the amount of time idle
connections are allowed to persist.

Solution

Use the keepalive_requests and keepalive_timeout directives to
alter the number of requests that can be made over a single connec-
tion and the time idle connections can stay open:

http {

keepalive_requests 320;
keepalive_timeout 300s;

}

The keepalive requests directive defaults to 100, and the
keepalive_timeout directive defaults to 75 seconds.

150 | Chapter 15: Performance Tuning

Discussion

Typically the default number of requests over a single connection
will fulfill client needs because browsers these days are allowed to
open multiple connections to a single server per fully qualified
domain name. The number of parallel open connections to a
domain is still limited typically to a number less than 10, so in this
regard, many requests over a single connection will happen. A trick
commonly employed by content delivery networks is to create mul-
tiple domain names pointed to the content server and alternate
which domain name is used within the code to enable the browser
to open more connections. You might find these connection opti-
mizations helpful if your frontend application continually polls your
backend application for updates, as an open connection that allows a
larger number of requests and stays open longer will limit the num-
ber of connections that need to be made.

15.3 Keeping Connections Open Upstream

Problem

You need to keep connections open to upstream servers for reuse to
enhance your performance.

Solution

Use the keepalive directive in the upstream context to keep con-
nections open to upstream servers for reuse:

proxy_http_version 1.1;
proxy_set_header Connection

nu,
B

upstream backend {
server 10.0.0.42;
server 10.0.2.56;

keepalive 32;
}

The keepalive directive in the upstream context activates a cache of
connections that stay open for each NGINX worker. The directive
denotes the maximum number of idle connections to keep open per
worker. The proxy modules directives used above the upstream
block are necessary for the keepalive directive to function properly

15.3 Keeping Connections Open Upstream | 151

for upstream server connections. The proxy_http_version direc-
tive instructs the proxy module to use HTTP version 1.1, which
allows for multiple requests to be made over a single connection
while it's open. The proxy_set_header directive instructs the proxy
module to strip the default header of close, allowing the connection
to stay open.

Discussion

You want to keep connections open to upstream servers to save the
amount of time it takes to initiate the connection, allowing the
worker process to instead move directly to making a request over an
idle connection. It's important to note that the number of open con-
nections can exceed the number of connections specified in the keep
alive directive as open connections and idle connections are not
the same. The number of keepalive connections should be kept
small enough to allow for other incoming connections to your
upstream server. This small NGINX tuning trick can save some
cycles and enhance your performance.

15.4 Buffering Responses

Problem

You need to buffer responses between upstream servers and clients
in memory to avoid writing responses to temporary files.

Solution

Tune proxy buffer settings to allow NGINX the memory to buffer
response bodies:

server {
proxy_buffering on;
proxy_buffer_size 8k;
proxy_buffers 8 32k;
proxy_busy_buffer_size 64k;

}

The proxy_buffering directive is either on or of f; by default it’s on.
The proxy_buffer_size denotes the size of a buffer used for read-
ing the first part of the response from the proxied server and
defaults to either 4k or 8k, depending on the platform. The

152 | Chapter 15: Performance Tuning

proxy_buffers directive takes two parameters: the number of buf-
fers and the size of the buffers. By default, the proxy_buffers direc-
tive is set to a number of 8 buffers of size either 4k or 8k, depending
on the platform. The proxy_busy_buffer_size directive limits the
size of buffers that can be busy, sending a response to the client
while the response is not fully read. The busy buffer size defaults to
double the size of a proxy buffer or the buffer size.

Discussion

Proxy buffers can greatly enhance your proxy performance, depend-
ing on the typical size of your response bodies. Tuning these settings
can have adverse effects and should be done by observing the aver-
age body size returned, and thoroughly and repeatedly testing.
Extremely large buffers set when they’re not necessary can eat up the
memory of your NGINX box. You can set these settings for specific
locations that are known to return large response bodies for optimal
performance.

15.5 Buffering Access Logs

Problem

You need to buffer logs to reduce the opportunity of blocks to the
NGINX worker process when the system is under load.

Solution

Set the buffer size and flush time of your access logs:

http {
access_log /var/log/nginx/access.log main buffer=32k
flush=1m;
}

The buffer parameter of the access_log directive denotes the size
of a memory buffer that can be filled with log data before being
written to disk. The flush parameter of the access_log directive
sets the longest amount of time a log can remain in a buffer before
being written to disk.

15.5 Buffering Access Logs | 153

Discussion

Buffering log data into memory may be a small step toward optimi-
zation. However, for heavily requested sites and applications, this
can make a meaningful adjustment to the usage of the disk and
CPU. When using the buffer parameter to the access_log direc-
tive, logs will be written out to disk if the next log entry does not fit
into the buffer. If using the flush parameter in conjunction with the
buffer parameter, logs will be written to disk when the data in the
buffer is older than the time specified. When buffering logs in this
way, when tailing the log, you may see delays up to the amount of
time specified by the flush parameter.

15.6 05 Tuning

Problem

You need to tune your operating system to accept more connections
to handle spike loads or highly trafficked sites.

Solution

Check the kernel setting for net.core.somaxconn, which is the maxi-
mum number of connections that can be queued by the kernel for
NGINX to process. If you set this number over 512, you'll need to
set the backlog parameter of the listen directive in your NGINX
configuration to match. A sign that you should look into this kernel
setting is if your kernel log explicitly says to do so. NGINX handles
connections very quickly, and for most use cases, you will not need
to alter this setting.

Raising the number of open file descriptors is a more common
need. In Linux, a file handle is opened for every connection; and
therefore NGINX may open two if you're using it as a proxy or load
balancer because of the open connection upstream. To serve a large
number of connections, you may need to increase the file descriptor
limit system-wide with the kernel option sys.fs.file_max, or for
the system user NGINX is running as in the /etc/security/limits.conf
file. When doing so you’ll also want to bump the number of
worker_connections and worker_rlimit_nofile. Both of these
configurations are directives in the NGINX configuration.

154 | Chapter 15: Performance Tuning

Enable more ephemeral ports. When NGINX acts as a reverse proxy
or load balancer, every connection upstream opens a temporary
port for return traffic. Depending on your system configuration, the
server may not have the maximum number of ephemeral ports
open. To check, review the setting for the kernel set-
ting net.ipv4.ip_local_port_range. The setting is a lower- and
upper-bound range of ports. It’s typically OK to set this kernel set-
ting from 1024 to 65535. 1024 is where the registered TCP ports
stop, and 65535 is where dynamic or ephemeral ports stop. Keep in
mind that your lower bound should be higher than the highest open
listening service port.

Discussion

Tuning the operating system is one of the first places you look when
you start tuning for a high number of connections. There are many
optimizations you can make to your kernel for your particular use
case. However, kernel tuning should not be done on a whim, and
changes should be measured for their performance to ensure the
changes are helping. As stated before, you’ll know when it’s time to
start tuning your kernel from messages logged in the kernel log or
when NGINX explicitly logs a message in its error log.

15.60STuning | 155

CHAPTER 16
Practical Ops Tips and Conclusion

16.0 Introduction

This last chapter will cover practical operations tips and is the con-
clusion to this book. Throughout this book, we've discussed many
ideas and concepts pertinent to operations engineers. However, I
thought a few more might be helpful to round things out. In this
chapter I'll cover making sure your configuration files are clean and
concise, as well as debugging configuration files.

16.1 Using Includes for Clean Configs

Problem

You need to clean up bulky configuration files to keep your configu-
rations logically grouped into modular configuration sets.

Solution

Use the include directive to reference configuration files, directo-
ries, or masks:

http {
include config.d/compression.conf;
include sites-enabled/*.conf

157

The include directive takes a single parameter of either a path to a
file or a mask that matches many files. This directive is valid in any
context.

Discussion

By using include statements you can keep your NGINX configura-
tion clean and concise. You’'ll be able to logically group your config-
urations to avoid configuration files that go on for hundreds of lines.
You can create modular configuration files that can be included in
multiple places throughout your configuration to avoid duplication
of configurations. Take the example fastcgi_param configuration file
provided in most package management installs of NGINX. If you
manage multiple FastCGI virtual servers on a single NGINX box,
you can include this configuration file for any location or context
where you require these parameters for FastCGI without having to
duplicate this configuration. Another example is SSL configurations.
If you're running multiple servers that require similar SSL configu-
rations, you can simply write this configuration once and include it
wherever needed. By logically grouping your configurations
together, you can rest assured that your configurations are neat and
organized. Changing a set of configuration files can be done by edit-
ing a single file rather than changing multiple sets of configuration
blocks in multiple locations within a massive configuration file.
Grouping your configurations into files and using include state-
ments is good practice for your sanity and the sanity of your collea-
gues.

16.2 Debugging Configs

Problem

You're getting unexpected results from your NGINX server.
Solution
Debug your configuration, and remember these tips:

o NGINX processes requests looking for the most specific
matched rule. This makes stepping through configurations by
hand a bit harder, but it’s the most efficient way for NGINX to

158 | Chapter 16: Practical Ops Tips and Conclusion

work. There’s more about how NGINX processes requests in the
documentation link in the section “Also See” on page 160.

» You can turn on debug logging. For debug logging you’ll need
to ensure that your NGINX package is configured with the --
with-debug flag. Most of the common packages have it; but if
you've built your own or are running a minimal package, you
may want to at least double-check. Once you've ensured you
have debug, you can set the error_log directive’s log level to
debug: error_log /var/log/nginx/error.log debug.

e You can enable debugging for particular connections.
The debug_connection directive is valid inside the events con-
text and takes an IP or CIDR range as a parameter. The direc-
tive can be declared more than once to add multiple IP
addresses or CIDR ranges to be debugged. This may be helpful
to debug an issue in production without degrading performance
by debugging all connections.

 You can debug for only particular virtual servers. Because the
error_log directive is valid in the main, HTTP, mail, stream,
server, and location contexts, you can set the debug log level in
only the contexts you need it.

» You can enable core dumps and obtain backtraces from them.
Core dumps can be enabled through the operating system or
through the NGINX configuration file. You can read more
about this from the admin guide in the section “Also See” on
page 160.

« Youre able to log what’s happening in rewrite statements with
the rewrite_log directive on: rewrite_log on.

Discussion

The NGINX platform is vast, and the configuration enables you to
do many amazing things. However, with the power to do amazing
things, there’s also the power to shoot your own foot. When debug-
ging, make sure you know how to trace your request through your
configuration; and if you have problems, add the debug log level to
help. The debug log is quite verbose but very helpful in finding out
what NGINX is doing with your request and where in your configu-
ration you've gone wrong.

16.2 Debugging Configs | 159

Also See

How NGINX Processes Requests
Debugging Admin Guide
Rewrite Log

16.3 Conclusion

This book has focused on high-performance load balancing, secu-
rity, and deploying and maintaining NGINX and NGINX Plus
servers. The book has demonstrated some of the most powerful fea-
tures of the NGINX application delivery platform. NGINX Inc. con-
tinues to develop amazing features and stay ahead of the curve.

This book has demonstrated many short recipes that enable you to
better understand some of the directives and modules that make
NGINX the heart of the modern web. The NGINX sever is not just a
web server, nor just a reverse proxy, but an entire application deliv-
ery platform, fully capable of authentication and coming alive with
the environments that it’s employed in. May you now know that.

160 | Chapter 16: Practical Ops Tips and Conclusion

About the Author

Derek DeJonghe has had a lifelong passion for technology. His
background and experience in web development, system adminis-
tration, and networking give him a well-rounded understanding of
modern web architecture. Derek leads a team of site reliability engi-
neers and produces self-healing, auto-scaling infrastructure for
numerous applications. He specializes in Linux cloud environments.
While designing, building, and maintaining highly available applica-
tions for clients, he consults for larger organizations as they embark
on their journey to the cloud. Derek and his team are on the fore-
front of a technology tidal wave and are engineering cloud best
practices every day. With a proven track record for resilient cloud
architecture, Derek helps RightBrain Networks be one of the stron-
gest cloud consulting agencies and managed service providers in
partnership with AWS today.

	Copyright
	Table of Contents
	Foreword
	Preface
	Chapter 1. Basics
	1.0 Introduction
	1.1 Installing on Debian/Ubuntu
	1.2 Installing on RedHat/CentOS
	1.3 Installing NGINX Plus
	1.4 Verifying Your Installation
	1.5 Key Files, Commands, and Directories
	1.6 Serving Static Content
	1.7 Graceful Reload

	Chapter 2. High-Performance Load Balancing
	2.0 Introduction
	2.1 HTTP Load Balancing
	2.2 TCP Load Balancing
	2.3 UDP Load Balancing
	2.4 Load-Balancing Methods
	2.5 Sticky Cookie
	2.6 Sticky Learn
	2.7 Sticky Routing
	2.8 Connection Draining
	2.9 Passive Health Checks
	2.10 Active Health Checks
	2.11 Slow Start
	2.12 TCP Health Checks

	Chapter 3. Traffic Management
	3.0 Introduction
	3.1 A/B Testing
	Problem
	Solution
	Discussion
	Also See

	3.2 Using the GeoIP Module and Database
	Problem
	Solution
	Discussion
	Also See

	3.3 Restricting Access Based on Country
	Problem
	Solution
	Discussion

	3.4 Finding the Original Client
	Problem
	Solution
	Discussion

	3.5 Limiting Connections
	Problem
	Solution
	Discussion

	3.6 Limiting Rate
	Problem
	Solution
	Discussion

	3.7 Limiting Bandwidth
	Problem
	Solution
	Discussion

	Chapter 4. Massively Scalable Content Caching
	4.0 Introduction
	4.1 Caching Zones
	4.2 Caching Hash Keys
	4.3 Cache Bypass
	4.4 Cache Performance
	4.5 Purging
	4.6 Cache Slicing

	Chapter 5. Programmability and Automation
	5.0 Introduction
	5.1 NGINX Plus API
	5.2 Key-Value Store
	Problem
	Solution
	Discussion
	Also See

	5.3 Installing with Puppet
	Problem
	Solution
	Discussion
	Also See

	5.4 Installing with Chef
	Problem
	Solution
	Discussion
	Also See

	5.5 Installing with Ansible
	Problem
	Solution
	Discussion
	Also See

	5.6 Installing with SaltStack
	Problem
	Solution
	Discussion
	Also See

	5.7 Automating Configurations with Consul Templating
	Problem
	Solution
	Discussion
	Also See

	Chapter 6. Authentication
	6.0 Introduction
	6.1 HTTP Basic Authentication
	Problem
	Solution
	Discussion

	6.2 Authentication Subrequests
	Problem
	Solution
	Discussion

	6.3 Validating JWTs
	Problem
	Solution
	Discussion
	Also See

	6.4 Creating JSON Web Keys
	Problem
	Solution
	Discussion
	Also See

	6.5 Authenticate Users via Existing OpenID Connect SSO
	Problem
	Solution
	Discussion
	Also See

	6.6 Obtaining the JSON Web Key from Google
	Problem
	Solution
	Discussion
	Also See

	Chapter 7. Security Controls
	7.0 Introduction
	7.1 Access Based on IP Address
	Problem
	Solution
	Discussion

	7.2 Allowing Cross-Origin Resource Sharing
	Problem
	Solution
	Discussion

	7.3 Client-Side Encryption
	Problem
	Solution
	Discussion
	Also See

	7.4 Upstream Encryption
	Problem
	Solution
	Discussion

	7.5 Securing a Location
	Problem
	Solution
	Discussion

	7.6 Generating a Secure Link with a Secret
	Problem
	Solution
	Discussion

	7.7 Securing a Location with an Expire Date
	Problem
	Solution
	Discussion

	7.8 Generating an Expiring Link
	Problem
	Solution
	Discussion

	7.9 HTTPS Redirects
	Problem
	Solution
	Discussion

	7.10 Redirecting to HTTPS where SSL/TLS Is Terminated Before NGINX
	Problem
	Solution
	Discussion

	7.11 HTTP Strict Transport Security
	Problem
	Solution
	Discussion
	Also See

	7.12 Satisfying Any Number of Security Methods
	Problem
	Solution
	Discussion

	7.13 Dynamic DDoS Mitigation
	Problem
	Solution
	Discussion

	Chapter 8. HTTP/2
	8.0 Introduction
	8.1 Basic Configuration
	Problem
	Solution
	Discussion
	Also See

	8.2 gRPC
	Problem
	Solution
	Discussion

	8.3 HTTP/2 Server Push
	Problem
	Solution
	Discussion

	Chapter 9. Sophisticated Media Streaming
	9.0 Introduction
	9.1 Serving MP4 and FLV
	9.2 Streaming with HLS
	9.3 Streaming with HDS
	9.4 Bandwidth Limits

	Chapter 10. Cloud Deployments
	10.0 Introduction
	10.1 Auto-Provisioning on AWS
	Problem
	Solution
	Discussion

	10.2 Routing to NGINX Nodes Without an AWS ELB
	Problem
	Solution
	Discussion
	Also See

	10.3 The NLB Sandwich
	Problem
	Solution
	Discussion

	10.4 Deploying from the AWS Marketplace
	Problem
	Solution
	Discussion

	10.5 Creating an NGINX Virtual Machine Image on Azure
	Problem
	Solution
	Discussion
	Also See

	10.6 Load Balancing Over NGINX Scale Sets on Azure
	Problem
	Solution
	Discussion

	10.7 Deploying Through the Azure Marketplace
	Problem
	Solution
	Discussion

	10.8 Deploying to Google Compute Engine
	Problem
	Solution
	Discussion

	10.9 Creating a Google Compute Image
	Problem
	Solution
	Discussion
	Also See

	10.10 Creating a Google App Engine Proxy
	Problem
	Solution
	Discussion

	Chapter 11. Containers/Microservices
	11.0 Introduction
	11.1 DNS SRV Records
	11.2 Using the Official NGINX Image
	Problem
	Solution
	Discussion
	Also See

	11.3 Creating an NGINX Dockerfile
	Problem
	Solution
	Discussion

	11.4 Building an NGINX Plus Image
	Problem
	Solution
	Discussion
	Also See

	11.5 Using Environment Variables in NGINX
	Problem
	Solution
	Discussion

	11.6 Kubernetes Ingress Controller
	Problem
	Solution
	Discussion

	11.7 OpenShift Router
	Problem
	Solution
	Discussion

	Chapter 12. High-Availability Deployment Modes
	12.0 Introduction
	12.1 NGINX HA Mode
	12.2 Load-Balancing Load Balancers with DNS
	12.3 Load Balancing on EC2
	12.4 Configuration Synchronization
	Problem
	Solution
	Discussion

	12.5 State Sharing with Zone Sync
	Problem
	Solution
	Discussion

	Chapter 13. Advanced Activity Monitoring
	13.0 Introduction
	13.1 Enable NGINX Open Source Stub Status
	Problem
	Solution
	Discussion

	13.2 Enabling the NGINX Plus Monitoring Dashboard Provided by NGINX Plus
	13.3 Collecting Metrics Using the NGINX Plus API

	Chapter 14. Debugging and Troubleshooting with Access Logs, Error Logs, and Request Tracing
	14.0 Introduction
	14.1 Configuring Access Logs
	Problem
	Solution
	Discussion

	14.2 Configuring Error Logs
	Problem
	Solution
	Discussion

	14.3 Forwarding to Syslog
	Problem
	Solution
	Discussion

	14.4 Request Tracing
	Problem
	Solution
	Discussion

	Chapter 15. Performance Tuning
	15.0 Introduction
	15.1 Automating Tests with Load Drivers
	Problem
	Solution
	Discussion

	15.2 Keeping Connections Open to Clients
	Problem
	Solution
	Discussion

	15.3 Keeping Connections Open Upstream
	Problem
	Solution
	Discussion

	15.4 Buffering Responses
	Problem
	Solution
	Discussion

	15.5 Buffering Access Logs
	Problem
	Solution
	Discussion

	15.6 OS Tuning
	Problem
	Solution
	Discussion

	Chapter 16. Practical Ops Tips and Conclusion
	16.0 Introduction
	16.1 Using Includes for Clean Configs
	Problem
	Solution
	Discussion

	16.2 Debugging Configs
	Problem
	Solution
	Discussion
	Also See

	16.3 Conclusion

	About the Author

